Near mantle solidus trace element partitioning at pressures up to 3.4 GPa

American Geophysical Union (AGU) - Tập 3 Số 7 - Trang 1-23 - 2002
Vincent J. M. Salters1, John Longhi2, Michael Bizimis1
1National High Magnetic Field Laboratory and Department of Geological Sciences 1800 E. Paul Dirac Drive, Tallahassee Florida 32306 USA
2Lamont‐Doherty Earth Observatory of Columbia University Rte 9W, Palisades New York 10964 USA

Tóm tắt

We present new experimental partitioning data for a range of petrogenetically important elements at pressures of up to 3.4 GPa. The experiments are designed to mimic low degrees of anhydrous melting beneath mid‐ocean ridges. The available data indicate that the partition coefficients are pressure, temperature, and composition dependent. Therefore partitioning behavior over the appropriate range of pressure, temperature, and composition must be quantified, in order to model continuous extraction of melt during the adiabatic rise of mantle material. For this purpose, we have parameterized the partitioning behavior of the REE, Hf, Zr, U, and Th based on a simple thermodynamic model. Although these parameterizations cannot be used for retrieving thermodynamic constants yet, they do yield accurate descriptions of the partitioning behavior that are useful for modeling decompression melting. Our parameterizations show that the partitioning of trace elements is strongly dependent on the Ca and Al‐content of the clinopyroxene (cpx) and REE are always incompatible in cpx on the peridotite solidus at pressures up to 3.4 GPa. For garnet the data indicate that the heavy REE partition coefficients decrease with increasing pressure. Our data also indicates that Pb is more incompatible than Ce in clinopyroxene; Ce and Pb have similar partition coefficients in garnet. Therefore the presence of a residual phase with high Pb partition coefficients is required to produce the near‐constant Ce/Pb ratios in MORB and OIB. Sulfides are the most likely phase to buffer the Pb content in the melt. Except at small porosities (<0.3%), clinopyroxene on the peridotite solidus is unable to fractionate U from Th significantly (15% 230Th‐excess), whereas garnet can fractionate U from Th effectively at porosities up to 1%. Therefore if the 230Th‐excesses in mid‐ocean ridge basalts are melting phenomena, then melting with garnet residual is required in order to be compatible with physical observations on porosities and upwelling rate at mid‐ocean ridges. New model calculations that include the compositional dependent partitioning of the trace elements show that the predicted physical characteristics (depth and extent of melting, upwelling rate, porosity) of the MORB melting regime are similar for the Lu/Hf, Sm/Nd, and U‐Th systems.

Từ khóa


Tài liệu tham khảo

10.1016/0009-2541(94)90129-5

10.1029/97JB00996

10.1016/0016-7037(94)90116-3

10.1016/0012-821X(93)90091-M

10.1038/363063a0

10.1016/0016-7037(93)90015-O

10.1038/372452a0

10.1016/0016-7037(95)00416-5

10.1016/S0012-821X(98)00106-X

10.1029/JB087iB08p07073

10.1016/S0012-821X(85)80007-8

Bowen N. L., 1928, The Evolution of the Igneous Rocks

10.1016/S0012-821X(01)00379-X

Dowty E., 1971, Crystal chemistry and structure of titanian and zirconian garnet, I, Review of spectral studies, Am. Mineral., 56, 2983

10.1093/petrology/29.6.1257

Fram M. S., 1992, Phase equilibria of dikes associated with Proterozoic anorthosite complexes, Am. Mineral., 77, 606

10.1007/978-94-010-1252-2

10.1016/0016-7037(95)00119-0

10.1016/0016-7037(92)90196-P

10.1007/BF00374706

10.1007/BF00307281

10.1007/BF00429424

10.1029/96JB02462

10.1016/0009-2541(94)90123-6

10.1007/BF00320827

10.1016/0009-2541(86)90053-7

10.1016/0009-2541(94)90126-0

10.1016/0012-821X(93)90077-M

10.1016/S0016-7037(98)00028-3

10.1093/petroj/40.5.831

10.1016/0012-821X(88)90132-X

Huggins F. E., 1977, Titanium‐containing silicate garnets, II, The crystal chemistry of melanites and schorlomites, Am. Mineral., 62, 646

Johnson K. T. M., 1989, Partitioning of REE, Ti, Zr, Hf and Nb between clinopyroxene and basaltic liquid: An ion microprobe study, Eos Trans. AGU, 70, 1388

10.1029/JB095iB03p02661

10.1038/375747a0

10.1098/rsta.1997.0010

10.1029/96JB00988

10.1029/91JB02840

10.1007/s004100050560

10.1093/petrology/7.3.337

10.1029/GM071p0183

10.1126/science.261.5122.739

Longhi J., 1992, Origin of green glass magmas by polybaric fractional fusion, Proc. Lunar Planet. Sci., 22, 343

10.1016/0016-7037(95)00111-C

10.1029/2001GC000204

Longhi J., 1999, The spinel/garnet transition in CMAS, Eos Trans AGU, 80

Longhi J., 1995, in Lunar Planet. Sci., 26th, 857

10.1029/JB081i023p04269

10.1016/0016-7037(86)90374-1

McKay G. A., 1989, in Geochemistry and Mineralogy of Rare Earth Elements, 45, 10.1515/9781501509032-006

Milton C., 1961, Kimzeyite, a zirconium garnet from Magnet cove, Arkansas Am. Mineral., 46, 533

10.1016/0016-7037(80)90138-6

10.1016/0016-7037(88)90053-1

10.1007/BF00344083

10.1007/BF00372233

10.1016/S0012-821X(97)00162-3

10.1007/BF00374720

10.1016/0012-821X(96)00070-2

10.1038/342420a0

10.1016/S0012-821X(98)00271-4

Shannon R. D., 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 32, 751, 10.1107/S0567739476001551

10.1029/1999GC000030

10.1016/0012-821X(93)90155-3

10.1038/46260

Team T. M. S., 1998, Imaging the deep seismic structure beneath a mid‐ocean ridge: The MELT experiment, Science, 280, 1215, 10.1126/science.280.5367.1215

10.1016/S0009-2541(99)00127-8

10.2138/am-1999-5-617

Walter M. J., 1999, Clinopyroxene composition and element partitioning at the solidus of spinel lherzolite, Eos Trans AGU, 80

Walter M., 2000, Determination of the Spinel to Garnet Lherzolite Transition in CMAS by in‐situ X‐Ray Diffraction, Eos Trans. AGU, 81

10.1016/0016-7037(77)90079-5

10.1007/s004100050330

10.1016/S0016-7037(98)00302-0