NbS2Cl2 monolayer: A promising 2D semiconductor for photocatalytic water splitting

FlatChem - Tập 27 - Trang 100237 - 2021
Man Qiao1,2, Chun Wang2, Yu Jing3, Xiaocheng Zhou2, Yafei Li2
1Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China
2Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
3College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Tài liệu tham khảo

Walter, 2010, Solar water splitting cells, Chem. Rev., 110, 6446, 10.1021/cr1002326 Maeda, 2010, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966 Qu, 2013, Progress, challenge and perspective of heterogeneous photocatalysts, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E Chen, 2017, Particulate photocatalysts for overall water spliting, Nat. Rev. Mater., 2, 17050, 10.1038/natrevmats.2017.50 Asahi, 2001, Visiblelight photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051 Yanagida, 2004, Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO, Chem. Lett., 33, 726, 10.1246/cl.2004.726 Maeda, 2005, GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777 Tee, 2017, Recent progress in energy-driven water splitting, Adv. Sci., 4, 1600337, 10.1002/advs.201600337 Osterloh, 2008, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35, 10.1021/cm7024203 Tsuji, 2005, Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS−CuInS2−AgInS2 solid-solution photocatalyst, Angew. Chem. Int. Ed., 117, 3631, 10.1002/ange.200500314 Ma, 2016, Visible light-driven z-scheme water splitting using oxysulfide H2 evolution photocatalysts, J. Phys. Chem. Lett., 7, 3892, 10.1021/acs.jpclett.6b01802 Maeda, 2006, Photocatalyst releasing hydrogen from water, Nature, 440, 295, 10.1038/440295a Chen, 2015, Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution, Angew. Chem. Int. Ed., 54, 8498, 10.1002/anie.201502686 Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-Infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation, Adv. Mater. 27 (2015) 363–369. Jiao, 2016, Predicting single-layer technetium dichalcogenides (TcX2, X= S Se) with promising applications in photovoltaics and photocatalysis, ACS Appl. Mater. Interface, 8, 5385, 10.1021/acsami.5b12606 Singh, 2015, Computational screening of 2D materials for photocatalysis, J. Phys. Chem. Lett., 6, 1087, 10.1021/jz502646d Jiang, 2015, 2D covalent triazine framework: a new class of organic photocatalyst for water splitting, J. Mater. Chem. A, 3, 7750, 10.1039/C4TA03438D Guo, 2016, MXene: a promising photocatalyst for water splitting, J. Mater. Chem. A, 4, 11446, 10.1039/C6TA04414J Zhuang, 2013, Single-layer group-III monochalcogenide photocatalysts for water splitting, Chem. Mater., 25, 3232, 10.1021/cm401661x Wang, 2009, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76, 10.1038/nmat2317 Wang, 2009, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s Wang, 2017, Two-dimensional metal phosphorus trisulfide nanosheets with solar hydrogen-evolving activtiy, Nano Energy, 40, 673, 10.1016/j.nanoen.2017.09.017 Shifa, 2018, High crystal quality 2D mangnese phosphorus trichalcogenide nanosheets and their photocatalytic activity, Adv. Funct. Mater., 28, 1800548, 10.1002/adfm.201800548 Cheng, 2018, High-yield productin of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution, Adv. Mater., 30, 1707433, 10.1002/adma.201707433 Qiao, 2018, The germanium telluride monolayer: a two dimensional semiconductor with high carrier mobility for photocatalytic water splitting, J. Mater. Chem. A, 6, 4119, 10.1039/C7TA10360C Jing, 2017, Ultrathin layers of PdPX (X = S, Se): two dimensional semiconductor for photocatalytic water splitting, Chem. -Eur. J., 23, 13612, 10.1002/chem.201703683 Jing, 2018, Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation, J. Mater. Chem. A, 6, 23495, 10.1039/C8TA08111E Qiao, 2018, PdSeO3 monolayer: promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc., 140, 12256, 10.1021/jacs.8b07855 Ju, 2020, Janus WSSe monolayer: an excelletn photocatalyst for overall water splitting, ACS Appl. Mater. Interfaces, 12, 29335 Ju, 2020, Janus transtion metal dichalcogenides: a superior platform for photocatalytic water splitting, J. Phys. Mater., 3, 10.1088/2515-7639/ab7c57 Ju, 2020, Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer, J. Am. Chem. Soc., 142, 1492, 10.1021/jacs.9b11614 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Mak, 2010, Atomically thin: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805 Warner, 2010, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano, 4, 1299, 10.1021/nn901648q Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z Schäfer, 1966, Beiträge zur chemie der elemente niob und tantal. LIV. sulfid-und selenidhalogenide des niobs, Anorg. Allg. Chem., 347, 225, 10.1002/zaac.19663470502 Sehnering, 1966, Beiträge zur chemie der elemente niob und tantal. LV. die kristallstruktur von NbS2Cl2, Anorg. Altg. Chem., 47, 231, 10.1002/zaac.19663470503 Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Heyd, 2004, Efcient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened coulomb hybrid functional, J. Chem. Phys., 121, 1187, 10.1063/1.1760074 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495 Baroni, 2001, Phonons and related crystal properties from density functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515 Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106 Martyna, 1992, Nosé-Hoover chains: the canonical ensemble via continuous dynamics, J. Chem. Phys., 97, 2635, 10.1063/1.463940 Zacharia, 2004, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B, 69, 10.1103/PhysRevB.69.155406 Molina-Sánchez, 2011, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B, 84, 10.1103/PhysRevB.84.155413 Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.236804 Sa, 2014, Strain engineering for phosphorene: the potential application as a photocatalyst, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t Bardeen, 1950, Deformation potentials and mobilities in non-polar crystals, Phys. Rev., 80, 72, 10.1103/PhysRev.80.72 Cai, 2014, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc., 136, 6269, 10.1021/ja4109787 Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475 Jing, 2017, GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett., 17, 1833, 10.1021/acs.nanolett.6b05143 Rohlfing, 2000, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B, 62, 4927, 10.1103/PhysRevB.62.4927 Onida, 2002, Electronic excitations: density functional versus many-body green’s-function approaches, Rev. Mod. Phys., 74, 601, 10.1103/RevModPhys.74.601