NbS2Cl2 monolayer: A promising 2D semiconductor for photocatalytic water splitting
Tài liệu tham khảo
Walter, 2010, Solar water splitting cells, Chem. Rev., 110, 6446, 10.1021/cr1002326
Maeda, 2010, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966
Qu, 2013, Progress, challenge and perspective of heterogeneous photocatalysts, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E
Chen, 2017, Particulate photocatalysts for overall water spliting, Nat. Rev. Mater., 2, 17050, 10.1038/natrevmats.2017.50
Asahi, 2001, Visiblelight photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Yanagida, 2004, Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO, Chem. Lett., 33, 726, 10.1246/cl.2004.726
Maeda, 2005, GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777
Tee, 2017, Recent progress in energy-driven water splitting, Adv. Sci., 4, 1600337, 10.1002/advs.201600337
Osterloh, 2008, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35, 10.1021/cm7024203
Tsuji, 2005, Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS−CuInS2−AgInS2 solid-solution photocatalyst, Angew. Chem. Int. Ed., 117, 3631, 10.1002/ange.200500314
Ma, 2016, Visible light-driven z-scheme water splitting using oxysulfide H2 evolution photocatalysts, J. Phys. Chem. Lett., 7, 3892, 10.1021/acs.jpclett.6b01802
Maeda, 2006, Photocatalyst releasing hydrogen from water, Nature, 440, 295, 10.1038/440295a
Chen, 2015, Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution, Angew. Chem. Int. Ed., 54, 8498, 10.1002/anie.201502686
Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-Infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation, Adv. Mater. 27 (2015) 363–369.
Jiao, 2016, Predicting single-layer technetium dichalcogenides (TcX2, X= S Se) with promising applications in photovoltaics and photocatalysis, ACS Appl. Mater. Interface, 8, 5385, 10.1021/acsami.5b12606
Singh, 2015, Computational screening of 2D materials for photocatalysis, J. Phys. Chem. Lett., 6, 1087, 10.1021/jz502646d
Jiang, 2015, 2D covalent triazine framework: a new class of organic photocatalyst for water splitting, J. Mater. Chem. A, 3, 7750, 10.1039/C4TA03438D
Guo, 2016, MXene: a promising photocatalyst for water splitting, J. Mater. Chem. A, 4, 11446, 10.1039/C6TA04414J
Zhuang, 2013, Single-layer group-III monochalcogenide photocatalysts for water splitting, Chem. Mater., 25, 3232, 10.1021/cm401661x
Wang, 2009, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76, 10.1038/nmat2317
Wang, 2009, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s
Wang, 2017, Two-dimensional metal phosphorus trisulfide nanosheets with solar hydrogen-evolving activtiy, Nano Energy, 40, 673, 10.1016/j.nanoen.2017.09.017
Shifa, 2018, High crystal quality 2D mangnese phosphorus trichalcogenide nanosheets and their photocatalytic activity, Adv. Funct. Mater., 28, 1800548, 10.1002/adfm.201800548
Cheng, 2018, High-yield productin of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution, Adv. Mater., 30, 1707433, 10.1002/adma.201707433
Qiao, 2018, The germanium telluride monolayer: a two dimensional semiconductor with high carrier mobility for photocatalytic water splitting, J. Mater. Chem. A, 6, 4119, 10.1039/C7TA10360C
Jing, 2017, Ultrathin layers of PdPX (X = S, Se): two dimensional semiconductor for photocatalytic water splitting, Chem. -Eur. J., 23, 13612, 10.1002/chem.201703683
Jing, 2018, Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation, J. Mater. Chem. A, 6, 23495, 10.1039/C8TA08111E
Qiao, 2018, PdSeO3 monolayer: promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc., 140, 12256, 10.1021/jacs.8b07855
Ju, 2020, Janus WSSe monolayer: an excelletn photocatalyst for overall water splitting, ACS Appl. Mater. Interfaces, 12, 29335
Ju, 2020, Janus transtion metal dichalcogenides: a superior platform for photocatalytic water splitting, J. Phys. Mater., 3, 10.1088/2515-7639/ab7c57
Ju, 2020, Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer, J. Am. Chem. Soc., 142, 1492, 10.1021/jacs.9b11614
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Mak, 2010, Atomically thin: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805
Warner, 2010, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano, 4, 1299, 10.1021/nn901648q
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Schäfer, 1966, Beiträge zur chemie der elemente niob und tantal. LIV. sulfid-und selenidhalogenide des niobs, Anorg. Allg. Chem., 347, 225, 10.1002/zaac.19663470502
Sehnering, 1966, Beiträge zur chemie der elemente niob und tantal. LV. die kristallstruktur von NbS2Cl2, Anorg. Altg. Chem., 47, 231, 10.1002/zaac.19663470503
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Heyd, 2004, Efcient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened coulomb hybrid functional, J. Chem. Phys., 121, 1187, 10.1063/1.1760074
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Baroni, 2001, Phonons and related crystal properties from density functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515
Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106
Martyna, 1992, Nosé-Hoover chains: the canonical ensemble via continuous dynamics, J. Chem. Phys., 97, 2635, 10.1063/1.463940
Zacharia, 2004, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B, 69, 10.1103/PhysRevB.69.155406
Molina-Sánchez, 2011, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B, 84, 10.1103/PhysRevB.84.155413
Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.236804
Sa, 2014, Strain engineering for phosphorene: the potential application as a photocatalyst, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t
Bardeen, 1950, Deformation potentials and mobilities in non-polar crystals, Phys. Rev., 80, 72, 10.1103/PhysRev.80.72
Cai, 2014, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc., 136, 6269, 10.1021/ja4109787
Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475
Jing, 2017, GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett., 17, 1833, 10.1021/acs.nanolett.6b05143
Rohlfing, 2000, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B, 62, 4927, 10.1103/PhysRevB.62.4927
Onida, 2002, Electronic excitations: density functional versus many-body green’s-function approaches, Rev. Mod. Phys., 74, 601, 10.1103/RevModPhys.74.601