Nature inspired node density estimation for molecular nanonetworks

Nano Communication Networks - Tập 12 - Trang 43-52 - 2017
Taqwa Saeed1, Marios Lestas1, Andreas Pitsillides2
1Department of Electrical Engineering, Frederick University, Nicosia, Cyprus
2Department Computer Science, University of Cyprus, Nicosia, Cyprus

Tài liệu tham khảo

Ye, 2010, Congestion control to achieve optimal broadcast efficiency in vanets, 1 Ramanathan, 2001, Making ad hoc networks density adaptive, 957 Artimy, 2007, Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks, IEEE Trans. Intell. Transp. Syst., 8, 400, 10.1109/TITS.2007.895290 Oda, 2010, A transmission power control adaptive to variation of node density in mobile ad hoc network clustering, 141 Khomami, 2015, Node density estimation in vanets using received signal power, Radioengineering, 24, 489, 10.13164/re.2015.0489 Akhtar, 2012, Analysis of distributed algorithms for density estimation in vanets (poster), 157 Onur, 2012, Cooperative density estimation in random wireless ad hoc networks, IEEE Commun. Lett., 16, 331, 10.1109/LCOMM.2012.011312.112140 Panichpapiboon, 2011, Exploiting wireless communication in vehicle density estimation, IEEE Trans. Veh. Technol., 60, 2742, 10.1109/TVT.2011.2158566 Mylonas, 2014, Speed adaptive probabilistic flooding for vehicular ad hoc networks, IEEE Trans. Veh. Technol., 64, 1973, 10.1109/TVT.2014.2339316 S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, The broadcast storm problem in a mobile ad hoc network, in: MobiCom’99: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, 1999, pp. 151–162. http://doi.acm.org/10.1145/313451.313525. Williams, 2002, Comparison of broadcasting techniques for mobile ad hoc networks, 194 Wang, 2010, A dynamic probabilistic broadcasting scheme based on cross-layer design for manets, I.J. Mod. Educ. Comput. Sci., 40, 10.5815/ijmecs.2010.01.06 A. Xeros, M. Lestas, M. Andreou, A. Pitsillides, Adaptive probabilistic flooding for information hovering in vanets, in: Vehicular Networking Conference, VNC, 2010, pp. 239–246. K. Ibrahim, M. Weigle, M. Abuelela, p-ivg: Probabilistic inter-vehicle geocast for dense vehicular networks, in: IEEE 69th Vehicular Technology Conference, 2009. Y. Sasson, D. Cavin, A. Schiper, Probabilistic broadcast for flooding in wireless mobile ad hoc networks, in: Proceedings of IEEE Wireless Communication and Networking, WCNC’03, 2003, pp. 1124–1130. http://dx.doi.org/10.1109/WCNC.2003.1200529. N. Farsad, H. Yilmaz, A. Eckford, C. Chae, W. Gue, A comprehensive survey of recent advancements in molecular communication, in: arXiv preprint arXiv:1410.4258 2015, pp. 2–3. Akyildiz, 2008, 2260 T. Saeed, M. Lestas, A. Pitsillides, Adaptive probabilistic flooding for nanonetworks employing molecular communication, in: Proceedings of the International Conference on Telecommunications, ICT’23, 2016, pp. 666–670. Liaskos, 2015, A promise of realizable, ultra-scalable communications at nano-scale: A multi-modal nano-machine architecture, IEEE Trans. Comput., 64, 1282, 10.1109/TC.2014.2329684 Crisóstomo, 2012, Probabilistic flooding in stochastic networks: Analysis of global information outreach, Comput. Netw., 56, 142, 10.1016/j.comnet.2011.08.014 Liaskos, 2015, Design and development of software defined metamaterials for nanonetworks, IEEE Circuits Syst. Mag., 15, 12, 10.1109/MCAS.2015.2484098 Misra, 2014, Green wireless body area nanonetworks: Energy management and the game of survival, IEEE J. Biomed. Health Inform., 18, 467, 10.1109/JBHI.2013.2293503 Ward, 2001, Mathematical modeling of quorum sensing in bacteria, IMA J. Math. Appl. Med. Biol., 18, 263, 10.1093/imammb/18.3.263 Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165 Mok, 2003, Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression, EMBO J., 22, 870, 10.1093/emboj/cdg085 S. Abdal, I. Aykyildiz, Bio-inspired synchronization for nanocommunication networks, in: Proceedings of IEEE Networking Symposium, GLOBECOM’11, 2011, pp. 2375–2379. Beckmann, 2009, Effects of communication impairments on quorum sensing, 276 Abadal, 2012, Quorum sensing-enabled amplification for molecular nanonetworks, 6162 Vogt, 2007, Quorum sensing and self-stopping worms, 16 Pierobon, 2014, A statistical–physical model of interference in diffusion-based molecular nanonetworks, IEEE Trans. Commun., 62, 2085, 10.1109/TCOMM.2014.2314650 Ioannou, 1995 Domitilla, 2014 Wang, 2012, Customizing cell signaling using engineered genetic logic circuits, Trends Microbiol., 20, 376, 10.1016/j.tim.2012.05.001 Jusiak, 2014, Synthetic gene circuits, Rev. Cell Biol. Mol. Med. Rubens, 2016, Synthetic mixed-signal computation in living cells, Nat. Commun., 7, 10.1038/ncomms11658 Moon, 2012, Genetic programs constructed from layered logic gates in single cells, Nature, 491, 249, 10.1038/nature11516 Teo, 2015, Synthetic biology: A unifying view and review using analog circuits, IEEE Trans. Biomed. Circuits Syst., 9, 453, 10.1109/TBCAS.2015.2461446 Daniel, 2013, Synthetic analog computation in living cells, Nature, 497, 619, 10.1038/nature12148 Nissim, 2010, A tunable dual-promoter integrator for targeting of cancer cells, Mol. Syst. Biol., 6, 444, 10.1038/msb.2010.99 Yi, 2000, Robust perfect adaptation in bacterial chemotaxis through integral feedback control, Proc. Natl. Acad. Sci., 97, 4649, 10.1073/pnas.97.9.4649 Tsioliaridou, 2015, Corona: A coordinate and routing system for nanonetworks, 18:1