Nature inspired node density estimation for molecular nanonetworks
Tài liệu tham khảo
Ye, 2010, Congestion control to achieve optimal broadcast efficiency in vanets, 1
Ramanathan, 2001, Making ad hoc networks density adaptive, 957
Artimy, 2007, Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks, IEEE Trans. Intell. Transp. Syst., 8, 400, 10.1109/TITS.2007.895290
Oda, 2010, A transmission power control adaptive to variation of node density in mobile ad hoc network clustering, 141
Khomami, 2015, Node density estimation in vanets using received signal power, Radioengineering, 24, 489, 10.13164/re.2015.0489
Akhtar, 2012, Analysis of distributed algorithms for density estimation in vanets (poster), 157
Onur, 2012, Cooperative density estimation in random wireless ad hoc networks, IEEE Commun. Lett., 16, 331, 10.1109/LCOMM.2012.011312.112140
Panichpapiboon, 2011, Exploiting wireless communication in vehicle density estimation, IEEE Trans. Veh. Technol., 60, 2742, 10.1109/TVT.2011.2158566
Mylonas, 2014, Speed adaptive probabilistic flooding for vehicular ad hoc networks, IEEE Trans. Veh. Technol., 64, 1973, 10.1109/TVT.2014.2339316
S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, The broadcast storm problem in a mobile ad hoc network, in: MobiCom’99: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, 1999, pp. 151–162. http://doi.acm.org/10.1145/313451.313525.
Williams, 2002, Comparison of broadcasting techniques for mobile ad hoc networks, 194
Wang, 2010, A dynamic probabilistic broadcasting scheme based on cross-layer design for manets, I.J. Mod. Educ. Comput. Sci., 40, 10.5815/ijmecs.2010.01.06
A. Xeros, M. Lestas, M. Andreou, A. Pitsillides, Adaptive probabilistic flooding for information hovering in vanets, in: Vehicular Networking Conference, VNC, 2010, pp. 239–246.
K. Ibrahim, M. Weigle, M. Abuelela, p-ivg: Probabilistic inter-vehicle geocast for dense vehicular networks, in: IEEE 69th Vehicular Technology Conference, 2009.
Y. Sasson, D. Cavin, A. Schiper, Probabilistic broadcast for flooding in wireless mobile ad hoc networks, in: Proceedings of IEEE Wireless Communication and Networking, WCNC’03, 2003, pp. 1124–1130. http://dx.doi.org/10.1109/WCNC.2003.1200529.
N. Farsad, H. Yilmaz, A. Eckford, C. Chae, W. Gue, A comprehensive survey of recent advancements in molecular communication, in: arXiv preprint arXiv:1410.4258 2015, pp. 2–3.
Akyildiz, 2008, 2260
T. Saeed, M. Lestas, A. Pitsillides, Adaptive probabilistic flooding for nanonetworks employing molecular communication, in: Proceedings of the International Conference on Telecommunications, ICT’23, 2016, pp. 666–670.
Liaskos, 2015, A promise of realizable, ultra-scalable communications at nano-scale: A multi-modal nano-machine architecture, IEEE Trans. Comput., 64, 1282, 10.1109/TC.2014.2329684
Crisóstomo, 2012, Probabilistic flooding in stochastic networks: Analysis of global information outreach, Comput. Netw., 56, 142, 10.1016/j.comnet.2011.08.014
Liaskos, 2015, Design and development of software defined metamaterials for nanonetworks, IEEE Circuits Syst. Mag., 15, 12, 10.1109/MCAS.2015.2484098
Misra, 2014, Green wireless body area nanonetworks: Energy management and the game of survival, IEEE J. Biomed. Health Inform., 18, 467, 10.1109/JBHI.2013.2293503
Ward, 2001, Mathematical modeling of quorum sensing in bacteria, IMA J. Math. Appl. Med. Biol., 18, 263, 10.1093/imammb/18.3.263
Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165
Mok, 2003, Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression, EMBO J., 22, 870, 10.1093/emboj/cdg085
S. Abdal, I. Aykyildiz, Bio-inspired synchronization for nanocommunication networks, in: Proceedings of IEEE Networking Symposium, GLOBECOM’11, 2011, pp. 2375–2379.
Beckmann, 2009, Effects of communication impairments on quorum sensing, 276
Abadal, 2012, Quorum sensing-enabled amplification for molecular nanonetworks, 6162
Vogt, 2007, Quorum sensing and self-stopping worms, 16
Pierobon, 2014, A statistical–physical model of interference in diffusion-based molecular nanonetworks, IEEE Trans. Commun., 62, 2085, 10.1109/TCOMM.2014.2314650
Ioannou, 1995
Domitilla, 2014
Wang, 2012, Customizing cell signaling using engineered genetic logic circuits, Trends Microbiol., 20, 376, 10.1016/j.tim.2012.05.001
Jusiak, 2014, Synthetic gene circuits, Rev. Cell Biol. Mol. Med.
Rubens, 2016, Synthetic mixed-signal computation in living cells, Nat. Commun., 7, 10.1038/ncomms11658
Moon, 2012, Genetic programs constructed from layered logic gates in single cells, Nature, 491, 249, 10.1038/nature11516
Teo, 2015, Synthetic biology: A unifying view and review using analog circuits, IEEE Trans. Biomed. Circuits Syst., 9, 453, 10.1109/TBCAS.2015.2461446
Daniel, 2013, Synthetic analog computation in living cells, Nature, 497, 619, 10.1038/nature12148
Nissim, 2010, A tunable dual-promoter integrator for targeting of cancer cells, Mol. Syst. Biol., 6, 444, 10.1038/msb.2010.99
Yi, 2000, Robust perfect adaptation in bacterial chemotaxis through integral feedback control, Proc. Natl. Acad. Sci., 97, 4649, 10.1073/pnas.97.9.4649
Tsioliaridou, 2015, Corona: A coordinate and routing system for nanonetworks, 18:1