Nature green with avarice and greed
Tóm tắt
Plants require adequate light to grow, but once the sun is above the horizon they typically absorb far more light than they can possibly use. We argue that this is the result of a selection pressure to ‘beggar their neighbors’ and stop them competing for other resources such as land, water and nutrients. This complements the famous quote that ‘Nature (is) red in tooth and claw’—Nature is also ‘Green with avarice and greed’.
Tài liệu tham khảo
Adir, N., Bar-Zvi, S., & Harris, D. (2020). The amazing phycobilisome. Biochimica Et Biophysica Acta, 1861, 148047. https://doi.org/10.1016/j.bbabio.2019.07.002
Allen, J. P., & Williams, J. C. (1998). Photosynthetic reaction centers. FEBS Letters, 438, 5–9. https://doi.org/10.1016/S0014-5793(98)01245-9
Aro, E. M., McCaffery, S., & Anderson, J. M. (1993). Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology, 103, 835–843. https://doi.org/10.1104/pp.103.3.835
Biel, K., & Fomina, I. (2015). Benson-Bassham-Calvin cycle contribution to the organic life on our planet. Photosynthetica, 53, 161–167. https://doi.org/10.1007/s11099-015-0112-7
Blankenship, R. E., & Prince, R. C. (1985). Excited state redox potentials and the Z-scheme of photosynthesis. Trends in Biochemical Sciences, 10, 382–383. https://doi.org/10.1016/0968-0004(85)90059-3
Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., Gunner, M. R., Junge, W., Kramer, D. M., Melis, A., Moore, T. A., Moser, C. C., Nocera, D. G., Nozik, A. J., Ort, D. R., Parson, W. W., Prince, R. C., & Sayre, R. T. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332, 805–809. https://doi.org/10.1126/science.12001
Borrego, C. M., Arellano, J. B., Abella, C. A., & GillbroGarcia-Gil, T. J. (1999). The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynthesis Research, 60, 257–264. https://doi.org/10.1023/A:1006230820007
Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation III: The steady state. Journal of Biological Chemistry, 217, 409–428. https://doi.org/10.1016/S0021-9258(19)57191-5
Chen, J. H., Chen, S. T., He, N. Y., Wang, Q. L., Zhao, Y., Gao, W., & Guo, F. Q. (2020a). Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants, 6, 570–580. https://doi.org/10.1038/s41477-020-0629-z
Chen, J. H., Wu, H., Xu, C., Liu, X. C., Huang, Z., Chang, S., Wang, W., Han, G., Kuang, T., Shen, J. R., & Zhang, X. (2020b). Architecture of the photosynthetic complex from a green sulfur bacterium. Science, 370, eabb6350. https://doi.org/10.1126/science.abb6350
Cherepanov, D. A., Brady, N. G., Shelaev, I. V., Nguyen, J., Gostev, F. E., Mamedov, M. D., Nadtochenko, V. A., & Bruce, B. D. (2020). PSI-SMALP, a detergent-free cyanobacterial photosystem I, reveals faster femtosecond photochemistry. Biophysical Journal, 118, 337–351. https://doi.org/10.1016/j.bpj.2019.11.3391
Cherepanov, D. A., Milanovsky, G. E., Petrova, A. A., Tikhonov, A. N., & Semenov, A. Y. (2017). Electron transfer through the acceptor side of photosystem I: Interaction with exogenous acceptors and molecular oxygen. Biochemistry (moscow), 82, 1249–1268. https://doi.org/10.1134/S0006297917110037
Chotewutmontri, P., & Barkan, A. (2020). Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proceedings of the National Academy of Sciences USA, 117, 21775–21784. https://doi.org/10.1073/pnas.2007833117
Cramer, W. A. (2019). Structure–function of the cytochrome b6f lipoprotein complex: A scientific odyssey and personal perspective. Photosynthesis Research, 139, 53–65. https://doi.org/10.1007/s11120-018-0585-x
Croce, R., & van Amerongen, H. (2020). Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science, 369, eaay2058. https://doi.org/10.1126/science.aay2058
Darwin, C. (2010). The origin of species: By means of natural selection, or the preservation of favoured races in the struggle for life. Cambridge University Press.
De Causmaecker, S., Douglass, J. S., Fantuzzi, A., Nitschke, W., & Rutherford, A. W. (2019). Energetics of the exchangeable quinone, QB, in Photosystem II. Proceedings of the National Academy of Sciences, 116, 19458–19463. https://doi.org/10.1073/pnas.19106751
Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024
Dods, R., Båth, P., Morozov, D., Gagnér, V. A., Arnlund, D., Luk, H. L., Kübel, J., Maj, M., Vallejos, A., Wickstrand, C., & Bosman, R. (2021). Ultrafast structural changes within a photosynthetic reaction centre. Nature, 589, 310–314. https://doi.org/10.1038/s41586-020-3000-7
Evans, J. R. (1987). The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology, 14, 69–79. https://doi.org/10.1071/PP9870069
Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., Alves, R., Savage, D., & Milo, R. (2019). Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry, 58, 3365–7336. https://doi.org/10.1021/acs.biochem.9b00237
Ge, S., Smith, R. G., Jacovides, C. P., Kramer, M. G., & Carruthers, R. I. (2011). Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology, 105, 107–118. https://doi.org/10.1007/s00704-010-0368-6
Ghosh, I., Khan, S., Banerjee, G., Dziarski, A., Vinyard, D. J., Debus, R. J., & Brudvig, G. W. (2019). Insights into proton-transfer pathways during water oxidation in photosystem II. The Journal of Physical Chemistry B, 123, 8195–8202. https://doi.org/10.1021/acs.jpcb.9b06244
Gómez-Consarnau, L., Akram, N., Lindell, K., Pedersen, A., Neutze, R., Milton, D. L., González, J. M., & Pinhassi, J. (2010). Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biology, 8, e1000358. https://doi.org/10.1371/journal.pbio.1000358
Goss, R., & Lepetit, B. (2015). Biodiversity of NPQ. Journal of Plant Physiology, 172, 13–32. https://doi.org/10.1016/j.jplph.2014.03.004
Gu, J., Zhou, Z., Li, Z., Chen, Y., Wang, Z., Zhang, H., & Yang, J. (2017). Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Frontiers in Plant Science, 8, 1082. https://doi.org/10.3389/fpls.2017.01082
Hatchard, C. G., & Parker, C. A. (1956). A new sensitive chemical actinometer-II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London: Series a: Mathematical and Physical Sciences, 235, 518–536. https://doi.org/10.1098/rspa.1956.0102
Hill, J. F., & Govindjee. (2014). The controversy over the minimum quantum requirement for oxygen evolution. Photosynthesis Research, 122, 97–112. https://doi.org/10.1007/s11120-014-0014-8
Kirchhoff, H. (2019). Chloroplast ultrastructure in plants. New Phytologist, 223, 565–574. https://doi.org/10.1111/nph.15730
Lanyi, J. K., & Balashov, S. P. (2008). Xanthorhodopsin: A bacteriorhodopsin-like proton pump with a carotenoid antenna. Biochimica Et Biophysica Acta, 1777, 684–688. https://doi.org/10.1016/j.bbabio.2008.05.005
Li, L., Aro, E. M., & Millar, A. H. (2018). Mechanisms of photodamage and protein turnover in photoinhibition. Trends in Plant Science, 23, 667–766. https://doi.org/10.1016/j.tplants.2018.05.004
Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., & Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 438, 86–89. https://doi.org/10.1038/nature04111
Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45, 633–662. https://doi.org/10.1146/annurev.pp.45.060194.003221
López-Calcagno, P. E., Brown, K. L., Simkin, A. J., Fisk, S. J., Vialet-Chabrand, S., Lawson, T., & Raines, C. A. (2020). Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nature Plants, 6, 1054–1063. https://doi.org/10.1038/s41477-020-0740-1
Marco, P., Elman, T., & Yacoby, I. (2019). Binding of ferredoxin NADP+ oxidoreductase (FNR) to plant photosystem I. Biochimica Et Biophysica Acta, 1860, 689–698. https://doi.org/10.1016/j.bbabio.2019.07.007
Miller, L. C., Martin, D. S., Liu, L. N., & Canniffe, D. P. (2020). Composition, organisation and function of purple photosynthetic machinery. In Q. Wang (Ed.), Microbial photosynthesis (pp. 73–114). Springer. https://doi.org/10.1007/978-981-15-3110-1_4
Mühlenbruch, M., Grossart, H. P., Eigemann, F., & Voss, M. (2018). Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environmental Microbiology, 20, 2671–2685. https://doi.org/10.1111/1462-2920.14302
Mullineaux, C. W., & Liu, L. N. (2020). Membrane dynamics in phototrophic bacteria. Annual Review of Microbiology, 74, 633–654. https://doi.org/10.1146/annurev-micro-020518-120134
Oesterhelt, D., & Krippahl, G. (1983). Phototrophic growth of Halobacteria and its use for isolation of photosynthetically-deficient mutants. Annales De L’institut Pasteur/microbiologie, 134, 137–150. https://doi.org/10.1016/S0769-2609(83)80101-X
Oren, A. (2011). Characterization of pigments of prokaryotes and their use in taxonomy and classification. Methods in Microbiology, 38, 261–282. https://doi.org/10.1016/B978-0-12-387730-7.00012-7
Orf, G. S., & Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research, 116, 315–331. https://doi.org/10.1007/s11120-013-9869-3
Ort, D. R., Zhu, X., & Melis, A. (2011). Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology, 155, 79–85. https://doi.org/10.1104/pp.110.165886
Overmann, J., Beatty, J. T., Hall, K. J., Pfennig, N., & Northcote, T. G. (1991). Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnology and Oceanography, 36, 846–859. https://doi.org/10.4319/lo.1991.36.5.0846
Parker, C. A., & Rees, W. T. (1960). Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. The Analyst, 85, 587–600. https://doi.org/10.1039/AN9608500587
Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. P. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352, aad4424. https://doi.org/10.1126/science.aad4424
Prince, R. C., & Dutton, P. L. (1975). A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: Cytochrome b-cytochrome c2 oxidation-reduction. Biochimica Et Biophysica Acta, 387, 609–613. https://doi.org/10.1016/0005-2728(75)90101-2
The Nobel Prize in Chemistry (1988). https://www.nobelprize.org/prizes/chemistry/1988/summary/
Rochaix, J. D. (2011). Regulation of photosynthetic electron transport. Biochimica Et Biophysica Acta, 1807, 375–383. https://doi.org/10.1016/j.bbabio.2010.11.010
Sirohiwal, A., Neese, F., & Pantazis, D. A. (2020). Protein matrix control of reaction center excitation in Photosystem II. Journal of the American Chemical Society, 142, 18174–18190. https://doi.org/10.1021/jacs.0c08526
Smil, V. (2013). Harvesting the biosphere: What we have taken from nature. MIT Press.
Smith, A. (1776) An inquiry into the nature and causes of the wealth of nations: Volume One. London: Printed for W. Strahan and T. Cadell. https://scholarsbank.uoregon.edu/xmlui/bitstream/handle/1794/782/wealth.pdf
Stiehl, H. H., & Witt, H. T. (1969). Quantitative treatment of the function of plastoquinone in photosynthesis. Zeitschrift Für Naturforschung B, 24, 1588–1598. https://doi.org/10.1515/znb-1969-1219
Straley, S. C., Parson, W. W., Mauzerall, D. C., & Clayton, R. K. (1973). Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas spheroides. Biochimica Et Biophysica Acta, 305, 597–609. https://doi.org/10.1016/0005-2728(73)90079-0
Tennyson, A. (1850) In Memoriam, A.H.H. available at https://rpo.library.utoronto.ca/poems/memoriam-h-h-obiit-mdcccxxxiii-all-133-poems#poem56
Tikhonov, A. N. (2018). The cytochrome b6f complex: Biophysical aspects of its functioning in chloroplasts. In J. Robin-Harris & E. J. Boekema (Eds.), Membrane protein complexes: Structure and function (pp. 287–328). Springer. https://doi.org/10.1007/978-981-10-7757-9_10
Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Weselek, A., Högy, P., & Obergfell, T. (2021). Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694. https://doi.org/10.1016/j.rser.2020.110694
Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544. https://doi.org/10.1146/annurev.biochem.67.1.509
Umena, Y., Kawakami, K., Shen, J. R., & Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473, 55–60. https://doi.org/10.1038/nature09913
Wada, M. (2013). Chloroplast movement. Plant Science, 210, 177–182. https://doi.org/10.1016/j.plantsci.2013.05.016
Wraight, C. A., & Clayton, R. K. (1974). The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochimica Et Biophysica Acta, 333, 246–260. https://doi.org/10.1016/0005-2728(74)90009-7
Xu, C., Zhu, Q., Chen, J. H., Shen, L., Yi, X., Huang, Z., Wang, W., Chen, M., Kuang, T., Shen, J. R., & Zhang, X. (2021). A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. Journal of Integrative Plant Biology, 63, 1740–1752. https://doi.org/10.1111/jipb.13113
Zhang, L., Qiao, N., Huang, C., & Wang, S. (2019). Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence. Remote Sensing, 11, 378. https://doi.org/10.3390/rs11040378
Zhu, C. G., Chen, Y. N., Li, W. H., Chen, X. L., & He, G. Z. (2015). Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance. Photosynthetica, 53, 231–240. https://doi.org/10.1007/s11099-015-0089-2