Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thông gió tự nhiên cho một tòa nhà đơn giản cách biệt có cửa sổ chính gió và các cấu hình đổi gió khác nhau: Xác thực CFD, nghiên cứu độ nhạy và phân tích hiệu suất
Tóm tắt
Các thiết bị đổi gió (windexchanger) là các cấu trúc tương đối nhỏ được đặt trên mái tòa nhà nhằm thúc đẩy thông gió tự nhiên. Bài báo này trình bày một nghiên cứu xác thực mô phỏng động lực học chất lỏng (CFD), phân tích độ nhạy và so sánh hiệu suất của ba cấu hình đổi gió (WE) áp dụng cho một tòa nhà đơn giản cách biệt với một cửa sổ chính gió. Nghiên cứu này giới hạn trong thông gió do gió (isothermal), với gió vuông góc với mặt chính gió của tòa nhà. Các mô phỏng CFD dựa trên phương trình Navier–Stokes trung bình Reynolds trong không gian 3D và trạng thái ổn định. Nghiên cứu xác thực được thực hiện với các kết quả thí nghiệm từ một thử nghiệm kênh nước đã được công bố trước đó. Phân tích độ nhạy tập trung vào kích thước miền, độ phân giải lưới và mô hình độ nhiễu. Đánh giá hiệu suất của ba cấu hình WE dựa trên vận tốc trung bình và hệ số áp suất tĩnh trung bình trong mặt phẳng trung tâm thẳng đứng, lưu lượng dòng thông gió và tỷ lệ phần trăm thể tích khu vực sinh sống có tốc độ gió bằng hoặc trên 0,10. Cấu hình WE với bốn lỗ và một ống dẫn cho thấy lưu lượng thông gió cao nhất (0,232 m3/s) và tỷ lệ phần trăm thể tích cao nhất (21%). Nghiên cứu này chỉ ra rằng việc đánh giá và lựa chọn các cấu hình WE không chỉ dựa vào lưu lượng thể tích hoặc chỉ số ACH mà còn cần xem xét tỷ lệ tốc độ không khí trong khu vực sinh sống, đặc biệt liên quan đến sự phân bố dòng chảy trong khu vực sinh sống.
Từ khóa
#thiết bị đổi gió #thông gió tự nhiên #CFD #phân tích độ nhạy #hiệu suất của cấu hìnhTài liệu tham khảo
ANSYS (2013). Fluent 15 user’s guide. Lebanon: Fluent Inc.
Baker CJ (2007). Wind engineering—Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 95: 843–870.
Bangalee MZI, Miau JJ, Lin SY, Yang JH (2013). Flow visualization, PIV measurement and CFD calculation for fluid-driven natural cross-ventilation in a scale model. Energy and Buildings, 66: 306–314.
Bañuelos-Ruedas F, Angeles-Camacho C, Rios-Marcuello S (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and Sustainable Energy Reviews, 14: 2383–2391.
Barlow JB, Rae WH, Pope A (1999). Low-Speed Wind Tunnel Testing, 3rd edn. New York: John Wiley & Sons.
Blocken B, Carmeliet J, Stathopoulos T (2007a). CFD evaluation of wind speed conditions in passages between parallel buildings: Effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 95: 941–962.
Blocken B, Stathopoulos T, Carmeliet J (2007b). CFD simulation of the atmospheric boundary layer: Wall function problems. Atmospheric Environment, 41: 238–252.
Blocken B, Stathopoulos T, Carmeliet J (2008). Wind environmental conditions in passages between two long narrow perpendicular buildings. Journal of Aerospace Engineering, 21: 280–287.
Blocken B, van Hooff T, Aanen L, Bronsema B (2011). Computational analysis of the performance of a venturi-shaped roof for natural ventilation: Venturi-effect versus wind-blocking effect. Computers & Fluids, 48: 202–213.
Blocken B (2014). 50 years of Computational Wind Engineering: Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129: 69–102.
Blocken B (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91: 219–245.
Blocken B (2018). LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Building Simulation, 11: 821–870.
Calautit JK, Hughes BR, Shahzad SS (2015). CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices. Renewable Energy, 83: 85–99.
Carrilho da Graça G, Daish NC, Linden PF (2015). A two-zone model for natural cross-ventilation. Building and Environment, 89: 72–85.
Castillo JA, Cruz-Salas MV, Huelsz G (2017). Natural ventilation by windexchangers in a building with a window in prevailing winds: Design guidelines. International Journal of Ventilation, 16: 1–14.
Cebeci T, Bradshaw P (1977). Momentum Transfer in Boundary Layers. Washington, D.C.: Hemisphere Publishing Corporation.
Chen Q (2009). Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment, 44: 848–858.
CONAVI (2010). Comisión Nacional de Vivienda, Código de Edificación de vivienda.
Cruz-Salas MV, Castillo JA, Huelsz G (2014). Experimental study on natural ventilation of a room with a windward window and different windexchangers. Energy and Buildings, 84: 458–465.
Cruz-Salas MV, Castillo JA, Huelsz G (2018). Effect of windexchanger duct cross-section area and geometry on the room airflow distribution. Journal of Wind Engineering and Industrial Aerodynamics, 179: 514–523.
Elmualim AA (2006a). Effect of damper and heat source on wind catcher natural ventilation performance. Energy and Buildings, 38: 939–948.
Elmualim AA (2006b). Dynamic modelling of a wind catcher/tower turret for natural ventilation. Building Services Engineering Research and Technology, 27: 165–182.
Elmualim AA, Awbi HB (2002). Wind tunnel and CFD investigation of the performance of “windcatcher” ventilation systems. International Journal of Ventilation, 1: 53–64.
Esfeh MK, Dehghan AA, Manshadi MD, Mohagheghian S (2012). Visualized flow structure around and inside of one-sided windcatchers. Energy and Buildings, 55: 545–552.
Etheridge D (2012). Natural Ventilation of Buildings—Theory, Measurement and Design. Chichester, UK: John Wiley & Sons.
Franke J, Hellsten A, Schlünzen H, Carissimo B (2007). Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. COST office.
Gallardo JP, Pettersen B, Andersson HI (2013). Effects of free-slip boundary conditions on the flow around a curved circular cylinder. Computers & Fluids, 86: 389–394.
Hughes BR, Ghani SAAA (2009). A numerical investigation into the effect of windvent dampers on operating conditions. Building and Environment, 44: 237–248.
Hughes BR, Ghani SAAA (2010). A numerical investigation into the effect of windvent louvre external angle on passive stack ventilation performance. Building and Environment, 45: 1025–1036.
Hughes BR, Calautit JK, Ghani SA (2012). The development of commercial wind towers for natural ventilation: A review. Applied Energy, 92: 606–627.
Jones WP, Launder BE (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15: 301–314.
Karava P, Stathopoulos T, Athienitis AK (2011). Airflow assessment in cross-ventilated buildings with operable facade elements. Building and Environment, 46: 266–279.
Khodakarami J, Aboseba MR (2015). Impact of openings’ number and outdoor flow direction on the indoor vertical flow velocity in wind catchers. International Journal of Renewable Energy Research, 5: 325–333.
Launder BE, Spalding DB (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3: 269–289.
Launder BE, Reece GJ, Rodi W (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68: 537–566.
Li L, Mak CM (2007). The assessment of the performance of a windcatcher system using computational fluid dynamics. Building and Environment, 42: 1135–1141.
Liu S, Mak CM, Niu J (2011). Numerical evaluation of louver configuration and ventilation strategies for the windcatcher system. Building and Environment, 46: 1600–1616.
Menter FR (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32: 1598–1605.
Meroney R, Derickson R (2014). Virtual reality in wind engineering: The windy world within the computer. Indian Journal Wind Engineering—Indian Society for Wind Engineering, 11(2): 11–26.
Montazeri H (2011). Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Building and Environment, 46: 370–378.
Montazeri H, Azizian R (2008). Experimental study on natural ventilation performance of one-sided wind catcher. Building and Environment, 43: 2193–2202.
Montazeri H, Montazeri F, Azizian R, Mostafavi S (2010). Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling. Renewable Energy, 35: 1424–1435.
Murakami S (1993). Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 46–47: 21–36.
Murakami S (1997). Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 67–68: 3–34.
Oropeza-Perez I, Østergaard PA (2014). Energy saving potential of utilizing natural ventilation under warm conditions—A case study of Mexico. Applied Energy, 130: 20–32.
Perén JI, van Hooff T, Leite BCC, Blocken B (2015a). CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Building and Environment, 85: 263–276.
Perén JI, van Hooff T, Leite BCC, Blocken B (2015b). Impact of eaves on cross-ventilation of a generic isolated leeward sawtooth roof building: Windward eaves, leeward eaves and eaves inclination. Building and Environment, 92: 578–590.
Perén JI, van Hooff T, Ramponi R, Blocken B, Leite BCC (2015c). Impact of roof geometry of an isolated leeward sawtooth roof building on cross-ventilation: Straight, concave, hybrid or convex? Journal of Wind Engineering and Industrial Aerodynamics, 145: 102–114.
Ramponi R, Blocken B (2012). CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Building and Environment, 53: 34–48.
Roache PJ (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, 116: 405–413.
Shetabivash H (2015). Investigation of opening position and shape on the natural cross ventilation. Energy and Buildings, 93: 1–15.
Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24: 227–238.
Solari G (2007). The international association for wind engineering (IAWE): Progress and prospects. Journal of Wind Engineering and Industrial Aerodynamics, 95: 813–842.
Stathopoulos T (1997). Computational wind engineering: Past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, 67–68: 509–532.
Su Y, Riffat SB, Lin Y, Khan N (2008). Experimental and CFD study of ventilation flow rate of a MonodraughtTM windcatcher. Energy and Buildings, 40: 1110–1116.
Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96: 1749–1761.
Tominaga Y, Stathopoulos T (2013). CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmospheric Environment, 79: 716–730.
van Hooff T, Blocken B (2010a). Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam Arena Stadium. Environmental Modelling & Software, 25: 51–65.
van Hooff T, Blocken B (2010b). On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Computers & Fluids, 39: 1146–1155.
Wieringa J (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41: 357–368.
Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4: 1510–1520.