Natural ultralong hemicelluloses phosphorescence

Cell Reports Physical Science - Tập 3 - Trang 101015 - 2022
Baozhong Lü1, Qian Gao1, Pengyu Li2, Jun Rao1, Ziwen Lv1, Meichao Shi1, Yajie Hu1, Xiang Hao1, Gegu Chen1, Meizhen Yin2, Feng Peng1
1Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
2State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China

Tài liệu tham khảo

Zhu, 2021, Cyclization-promoted ultralong low-temperature phosphorescence via boosting intersystem crossing, J. Am. Chem. Soc., 143, 2164, 10.1021/jacs.0c12659 Kabe, 2017, Organic long persistent luminescence, Nature, 550, 384, 10.1038/nature24010 Hirata, 2014, Large reverse saturable absorption under weak continuous incoherent light, Nat. Mater., 13, 938, 10.1038/nmat4081 Miao, 2017, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles, Nat. Biotechnol., 35, 1102, 10.1038/nbt.3987 Yang, 2018, The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens, Nat. Commun., 9, 840, 10.1038/s41467-018-03236-6 An, 2015, Stabilizing triplet excited states for ultralong organic phosphorescence, Nat. Mater., 14, 685, 10.1038/nmat4259 Cai, 2017, Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions, Adv. Mater., 29, 1701244, 10.1002/adma.201701244 Gong, 2015, Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens, Adv. Mater., 27, 6195, 10.1002/adma.201502442 Zhou, 2020, Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging, Nat. Commun., 11, 4655, 10.1038/s41467-020-18520-7 Zhang, 2020, Molecular engineering for metal-free amorphous materials with room-temperature phosphorescence, Angew. Chem. Int. Ed. Engl., 59, 11206, 10.1002/anie.201915433 Ma, 2021, Supramolecular purely organic room-temperature phosphorescence, Acc. Chem. Res., 54, 3403, 10.1021/acs.accounts.1c00336 Zhang, 2021, Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films, J. Am. Chem. Soc., 143, 13675, 10.1021/jacs.1c05213 Gu, 2020, Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer, Nat. Commun., 11, 944, 10.1038/s41467-020-14792-1 Cai, 2019, Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking, Nat. Commun., 10, 4247, 10.1038/s41467-019-11749-x Ma, 2018, Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission, Angew. Chem. Int. Ed. Engl., 57, 10854, 10.1002/anie.201803947 Zhao, 2020, Room-temperature phosphorescence from organic aggregates, Nat. Rev. Mater., 5, 869, 10.1038/s41578-020-0223-z Shoji, 2017, Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules, J. Am. Chem. Soc., 139, 2728, 10.1021/jacs.6b11984 He, 2019, Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications, Adv. Mater., 31, 1807222, 10.1002/adma.201807222 Zhang, 2019, Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril, Chem. Sci., 10, 7773, 10.1039/C9SC02633A Ma, 2021, Supramolecular pins with ultralong efficient phosphorescence, Adv. Mater., 33, 2007476, 10.1002/adma.202007476 Wang, 2021, Producing long afterglow by cellulose confinement effect: a wood-inspired design for sustainable phosphorescent materials, Carbon, 171, 946, 10.1016/j.carbon.2020.09.060 Jiang, 2018, Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications, Adv. Mater., 30, 1800783, 10.1002/adma.201800783 Li, 2018, Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices, Nat. Commun., 9, 734, 10.1038/s41467-018-03144-9 Wang, 2019, Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence, Angew. Chem. Int. Ed. Engl., 58, 18443, 10.1002/anie.201911035 Tan, 2021, Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption, Adv. Mater., 33, 2006781, 10.1002/adma.202006781 Yang, 2016, Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids, Adv. Opt. Mater., 4, 897, 10.1002/adom.201500666 Fang, 2022, Light emission of organic luminogens: generation, mechanism and application, Prog. Mater. Sci., 125, 100914, 10.1016/j.pmatsci.2021.100914 Fang, 2018, Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond, Mater. Chem. Front., 2, 2124, 10.1039/C8QM00396C Li, 2020, Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials, Acc. Chem. Res., 53, 962, 10.1021/acs.accounts.0c00060 Wang, 2019, Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism, Angew. Chem. Int. Ed. Engl., 58, 12667, 10.1002/anie.201906226 Dou, 2018, Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate, Biomacromolecules, 19, 2014, 10.1021/acs.biomac.8b00123 Cai, 2021, Ultralong organic phosphorescent foams with high mechanical strength, J. Am. Chem. Soc., 143, 16256, 10.1021/jacs.1c07674 Gong, 2013, Room temperature phosphorescence from natural products: crystallization matters, Sci. China Chem., 56, 1178, 10.1007/s11426-013-4923-8 Tang, 2021, Nonconventional luminophores: characteristics, advancements and perspectives, Chem. Soc. Rev., 50, 12616, 10.1039/D0CS01087A Zhang, 2020, Clusterization-triggered emission: uncommon luminescence from common materials, Mater. Today, 32, 275, 10.1016/j.mattod.2019.08.010 Du, 2019, Clustering-triggered emission of cellulose and its derivatives, Chin. J. Polym. Sci., 37, 409, 10.1007/s10118-019-2215-2 Hendriks, 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol., 100, 10, 10.1016/j.biortech.2008.05.027 Yuan, 2021, Sustainable afterglow materials from lignin inspired by wood phosphorescence, Cell Rep. Phys. Sci., 2, 100542, 10.1016/j.xcrp.2021.100542 Ibn Yaich, 2017, Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction, Chem. Rev., 117, 8177, 10.1021/acs.chemrev.6b00841 Peng, 2012, Fractional purification and bioconversion of hemicelluloses, Biotechnol. Adv., 30, 879, 10.1016/j.biotechadv.2012.01.018 Hao, 2021, Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks, Green Chem., 23, 7796, 10.1039/D1GC02696H Rao, 2021, Constructing a novel xylan-based film with flexibility, transparency, and high strength, Biomacromolecules, 22, 3810, 10.1021/acs.biomac.1c00657 Zhou, 2020, A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence, Chem. Sci., 11, 2926, 10.1039/C9SC06518K Liu, 2019, Sulfur-based intramolecular hydrogen-bond: excited-state hydrogen-bond on/off switch with dual room-temperature phosphorescence, J. Am. Chem. Soc., 141, 9885, 10.1021/jacs.9b02765 Johns, 2020, Employing photoluminescence to rapidly follow aggregation and dispersion of cellulose nanofibrils, Analyst, 145, 4836, 10.1039/D0AN00868K Fundador, 2012, Acetylation and characterization of xylan from hardwood kraft pulp, Carbohydr. Polym., 87, 170, 10.1016/j.carbpol.2011.07.034 Zhang, 2021, Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent clusteroluminescence towards multicolor cell imaging and molecular ruler, Sci. China Chem., 64, 1990, 10.1007/s11426-021-1067-3 Wang, 2020, Time-dependent afterglow color in a single-component organic molecular crystal, Angew. Chem. Int. Ed. Engl., 59, 10032, 10.1002/anie.202001141 Chen, 2019, Achieving dual-emissive and time-dependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding, Adv. Opt. Mater., 7, 1801593, 10.1002/adom.201801593 Dou, 2020, Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers, Adv. Mater., 32, 2004768, 10.1002/adma.202004768 Yuan, 2010, Crystallization-induced phosphorescence of pure organic luminogens at room temperature, J. Phys. Chem. C, 114, 6090, 10.1021/jp909388y Xie, 2021, Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system, Nat. Commun., 12, 3522, 10.1038/s41467-021-23742-4 Lefebvre, 2017, Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys., 19, 17928, 10.1039/C7CP02110K Chemin, 2016, Periodate oxidation of 4-O-methylglucuronoxylans: influence of the reaction conditions, Carbohydr. Polym., 142, 45, 10.1016/j.carbpol.2016.01.025 Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B Condens. Matter, 37, 785, 10.1103/PhysRevB.37.785 Wang, 2004, Development and testing of a general amber force field, J. Comput. Chem., 25, 1157, 10.1002/jcc.20035 Bayly, 1993, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem., 97, 10269, 10.1021/j100142a004 Van Der Spoel, 2005, GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701, 10.1002/jcc.20291 Van Gunsteren, 1988, A leap-frog algorithm for stochastic dynamics, Mol. Simul., 1, 173, 10.1080/08927028808080941 Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H Darden, 1993, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397 Vorlová, 2015, Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study, Eur. J. Med. Chem., 89, 189, 10.1016/j.ejmech.2014.10.043 Grimme, 2011, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32, 1456, 10.1002/jcc.21759 Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885 Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5