Natural ultralong hemicelluloses phosphorescence
Tài liệu tham khảo
Zhu, 2021, Cyclization-promoted ultralong low-temperature phosphorescence via boosting intersystem crossing, J. Am. Chem. Soc., 143, 2164, 10.1021/jacs.0c12659
Kabe, 2017, Organic long persistent luminescence, Nature, 550, 384, 10.1038/nature24010
Hirata, 2014, Large reverse saturable absorption under weak continuous incoherent light, Nat. Mater., 13, 938, 10.1038/nmat4081
Miao, 2017, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles, Nat. Biotechnol., 35, 1102, 10.1038/nbt.3987
Yang, 2018, The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens, Nat. Commun., 9, 840, 10.1038/s41467-018-03236-6
An, 2015, Stabilizing triplet excited states for ultralong organic phosphorescence, Nat. Mater., 14, 685, 10.1038/nmat4259
Cai, 2017, Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions, Adv. Mater., 29, 1701244, 10.1002/adma.201701244
Gong, 2015, Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens, Adv. Mater., 27, 6195, 10.1002/adma.201502442
Zhou, 2020, Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging, Nat. Commun., 11, 4655, 10.1038/s41467-020-18520-7
Zhang, 2020, Molecular engineering for metal-free amorphous materials with room-temperature phosphorescence, Angew. Chem. Int. Ed. Engl., 59, 11206, 10.1002/anie.201915433
Ma, 2021, Supramolecular purely organic room-temperature phosphorescence, Acc. Chem. Res., 54, 3403, 10.1021/acs.accounts.1c00336
Zhang, 2021, Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films, J. Am. Chem. Soc., 143, 13675, 10.1021/jacs.1c05213
Gu, 2020, Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer, Nat. Commun., 11, 944, 10.1038/s41467-020-14792-1
Cai, 2019, Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking, Nat. Commun., 10, 4247, 10.1038/s41467-019-11749-x
Ma, 2018, Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission, Angew. Chem. Int. Ed. Engl., 57, 10854, 10.1002/anie.201803947
Zhao, 2020, Room-temperature phosphorescence from organic aggregates, Nat. Rev. Mater., 5, 869, 10.1038/s41578-020-0223-z
Shoji, 2017, Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules, J. Am. Chem. Soc., 139, 2728, 10.1021/jacs.6b11984
He, 2019, Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications, Adv. Mater., 31, 1807222, 10.1002/adma.201807222
Zhang, 2019, Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril, Chem. Sci., 10, 7773, 10.1039/C9SC02633A
Ma, 2021, Supramolecular pins with ultralong efficient phosphorescence, Adv. Mater., 33, 2007476, 10.1002/adma.202007476
Wang, 2021, Producing long afterglow by cellulose confinement effect: a wood-inspired design for sustainable phosphorescent materials, Carbon, 171, 946, 10.1016/j.carbon.2020.09.060
Jiang, 2018, Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications, Adv. Mater., 30, 1800783, 10.1002/adma.201800783
Li, 2018, Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices, Nat. Commun., 9, 734, 10.1038/s41467-018-03144-9
Wang, 2019, Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence, Angew. Chem. Int. Ed. Engl., 58, 18443, 10.1002/anie.201911035
Tan, 2021, Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption, Adv. Mater., 33, 2006781, 10.1002/adma.202006781
Yang, 2016, Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids, Adv. Opt. Mater., 4, 897, 10.1002/adom.201500666
Fang, 2022, Light emission of organic luminogens: generation, mechanism and application, Prog. Mater. Sci., 125, 100914, 10.1016/j.pmatsci.2021.100914
Fang, 2018, Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond, Mater. Chem. Front., 2, 2124, 10.1039/C8QM00396C
Li, 2020, Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials, Acc. Chem. Res., 53, 962, 10.1021/acs.accounts.0c00060
Wang, 2019, Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism, Angew. Chem. Int. Ed. Engl., 58, 12667, 10.1002/anie.201906226
Dou, 2018, Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate, Biomacromolecules, 19, 2014, 10.1021/acs.biomac.8b00123
Cai, 2021, Ultralong organic phosphorescent foams with high mechanical strength, J. Am. Chem. Soc., 143, 16256, 10.1021/jacs.1c07674
Gong, 2013, Room temperature phosphorescence from natural products: crystallization matters, Sci. China Chem., 56, 1178, 10.1007/s11426-013-4923-8
Tang, 2021, Nonconventional luminophores: characteristics, advancements and perspectives, Chem. Soc. Rev., 50, 12616, 10.1039/D0CS01087A
Zhang, 2020, Clusterization-triggered emission: uncommon luminescence from common materials, Mater. Today, 32, 275, 10.1016/j.mattod.2019.08.010
Du, 2019, Clustering-triggered emission of cellulose and its derivatives, Chin. J. Polym. Sci., 37, 409, 10.1007/s10118-019-2215-2
Hendriks, 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol., 100, 10, 10.1016/j.biortech.2008.05.027
Yuan, 2021, Sustainable afterglow materials from lignin inspired by wood phosphorescence, Cell Rep. Phys. Sci., 2, 100542, 10.1016/j.xcrp.2021.100542
Ibn Yaich, 2017, Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction, Chem. Rev., 117, 8177, 10.1021/acs.chemrev.6b00841
Peng, 2012, Fractional purification and bioconversion of hemicelluloses, Biotechnol. Adv., 30, 879, 10.1016/j.biotechadv.2012.01.018
Hao, 2021, Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks, Green Chem., 23, 7796, 10.1039/D1GC02696H
Rao, 2021, Constructing a novel xylan-based film with flexibility, transparency, and high strength, Biomacromolecules, 22, 3810, 10.1021/acs.biomac.1c00657
Zhou, 2020, A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence, Chem. Sci., 11, 2926, 10.1039/C9SC06518K
Liu, 2019, Sulfur-based intramolecular hydrogen-bond: excited-state hydrogen-bond on/off switch with dual room-temperature phosphorescence, J. Am. Chem. Soc., 141, 9885, 10.1021/jacs.9b02765
Johns, 2020, Employing photoluminescence to rapidly follow aggregation and dispersion of cellulose nanofibrils, Analyst, 145, 4836, 10.1039/D0AN00868K
Fundador, 2012, Acetylation and characterization of xylan from hardwood kraft pulp, Carbohydr. Polym., 87, 170, 10.1016/j.carbpol.2011.07.034
Zhang, 2021, Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent clusteroluminescence towards multicolor cell imaging and molecular ruler, Sci. China Chem., 64, 1990, 10.1007/s11426-021-1067-3
Wang, 2020, Time-dependent afterglow color in a single-component organic molecular crystal, Angew. Chem. Int. Ed. Engl., 59, 10032, 10.1002/anie.202001141
Chen, 2019, Achieving dual-emissive and time-dependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding, Adv. Opt. Mater., 7, 1801593, 10.1002/adom.201801593
Dou, 2020, Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers, Adv. Mater., 32, 2004768, 10.1002/adma.202004768
Yuan, 2010, Crystallization-induced phosphorescence of pure organic luminogens at room temperature, J. Phys. Chem. C, 114, 6090, 10.1021/jp909388y
Xie, 2021, Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system, Nat. Commun., 12, 3522, 10.1038/s41467-021-23742-4
Lefebvre, 2017, Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys., 19, 17928, 10.1039/C7CP02110K
Chemin, 2016, Periodate oxidation of 4-O-methylglucuronoxylans: influence of the reaction conditions, Carbohydr. Polym., 142, 45, 10.1016/j.carbpol.2016.01.025
Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B Condens. Matter, 37, 785, 10.1103/PhysRevB.37.785
Wang, 2004, Development and testing of a general amber force field, J. Comput. Chem., 25, 1157, 10.1002/jcc.20035
Bayly, 1993, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem., 97, 10269, 10.1021/j100142a004
Van Der Spoel, 2005, GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701, 10.1002/jcc.20291
Van Gunsteren, 1988, A leap-frog algorithm for stochastic dynamics, Mol. Simul., 1, 173, 10.1080/08927028808080941
Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Darden, 1993, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397
Vorlová, 2015, Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study, Eur. J. Med. Chem., 89, 189, 10.1016/j.ejmech.2014.10.043
Grimme, 2011, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32, 1456, 10.1002/jcc.21759
Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5