Độ phóng xạ tự nhiên và chỉ số nguy hiểm ngoài trời trong cát Brazil

Journal of Radioanalytical and Nuclear Chemistry - Tập 328 - Trang 903-910 - 2021
M. A. Guazzelli1, N. H. Medina2, V. A. P. Aguiar2
1Centro Universitário da FEI, São Bernardo do Campo, Brazil
2Instituto de Física da Universidade de São Paulo, São Paulo, Brazil

Tóm tắt

Phân bố độ phóng xạ tự nhiên từ cát bãi biển Brazil đã được nghiên cứu bằng phương pháp quang phổ gamma. Trong khi ở hầu hết các khu vực được nghiên cứu, liều lượng do phơi nhiễm bên ngoài với tia gamma, phát sinh từ các nguyên tố địa phương tự nhiên, nằm trong khoảng 0.3 và 1.0 mSv/năm, một số mẫu cát từ bang Bahia, Rio de Janeiro và Sao Paulo có mức độ phóng xạ cao hơn do sự hiện diện của monazit và zircon, vượt quá giá trị trung bình thế giới cho phơi nhiễm bên ngoài do các đồng vị phóng xạ tự nhiên.

Từ khóa

#độ phóng xạ tự nhiên #chỉ số nguy hiểm #cát Brazil #quang phổ gamma #phơi nhiễm ngoại lai

Tài liệu tham khảo

Baykara O, Dogru M (2009) Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones. Radiat Meas 44:116–121 Bingöldağ N, Otansev P (2018) Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey. Radiochim Acta 106(5):401–411 Mc Laughlin JP (2015) Some characteristics and effects of natural radiation. Radiat Prot Dosimetry 167(1–3):2–7 Shahbazi-Gahrouei D et al (2013) A review on natural background radiation. Adv Biomed Res (Ser Online) 2:65 UNSCEAR (2000) Sources and Effects of Ionizing Radiation. United Nations, New York, and references there in. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf. Accessed 12 Feb 2021 Firestone RB, Shirley VS (1996) Table of isotopes CD ROM edition. Version 1.0 March, 1996. S.Y. Frank Chu CD-ROM Editor Mohanty AK et al (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38:153–165 Penna-Franca E et al (1965) Status of investigations in the Brazilian areas of high natural radioactivity. Health Phys 11:699–712 Paschoa AS (2000) More than forty years of studies of natural radioactivity in Brazil. Technology 7:193–212 Paschoa AS and Steinhausler F (2010) Technologically enhanced natural radiation. Radioact Environ 17 (series editor M.S. Baxter, Elsevier Ltd) Anjos RM et al (2004) Radioecology teaching: evaluation of the background radiation levels from areas with high concentrations of radionuclides in soil. Eur J Phys 25(2):133–144 Wei L, Sugahara T (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China. J Radiat Res 41:S1–S7 Paul AC et al (1998) Population exposure to airborne thorium at the high natural radiation areas in India. J Environ Radioact 40:251–259 Ghiassi-Nejad M et al (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93 NCRP (1987). Report No. 094, National Council on Radiation Protection and Measurements, Bethesda, Maryland. https://ncrponline.org/shop/reports/report-no-094-exposure-of-the-population-in-the-united-states-and-canada-from-natural-background-radiation-supersedes-ncrp-report-no-45-1987/. Accessed 12 Feb 2021 UNSCEAR (2008) Report vol. I, Sources of Ionizing Radiation. Tables A-1 to A 14. https://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR.pdf. Accessed 12 Feb 2021 Alencar AS, Freitas AC (2005) Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region. Radiat Meas 40:76–83 Anjos RM et al (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39:245–253 Bezuidenhout J (2014) The background radiation and exposure levels at various South African west coast military units, Scientia Militaria. South Afr J Military Stud 42:164–176 Chiozzi P et al (2000) Laboratory application of NaI(Tl) γ-ray spectrometry to studies of natural radioactivity in geophysics. Appl Radiat Isot 53:127–132 Joel ES et al (2019) Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications. Sci Rep 9. Article number: 4219 Malanca A et al (1996) Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). J Environ Radioact 30:55–67 Masok FB et al (2018) Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa. J Radiat Res Appl Sci 11(1):29–36 Mubarak F et al (2017) Radiological investigation of high background radiation areas. Sci Rep 7. Art. 15223 Pereira BR et al (2013) Titanium extraction from waste NORM. In: X Latin American symposium on nuclear physics and applications. Proceedings of science (X LASNPA) 076 Silveira MAG et al (2012) High natural radiation in Brazilian sands. In: IX Latin American symposium on nuclear physics and applications AIP conference proceedings 1423, pp 379–382 Silveira MAG et al (2015) Natural radiation in byproducts of the production of phosphoric acid. In: International joint conference RADIO 2014, Brazilian Journal of Radiation Sciences. 3, 1 A Veiga R et al (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41:189–196 Matsumoto MM, et al. (2008) “The Study of Natural Radiation Distribution in Soil of Sao Bernardo do Campo”, Natural Radiation Environment: 8th International Symposium (NRE VIII). American Institute of Physics Conference Proceedings, 2008, 1034, p. 252-255. Silveira MAG et al (2009) Natural radiation from soil using gamma-ray spectrometry. In: Nuclear physics 2008: XXXI workshop on nuclear physics in Brazil. American Institute of Physics conference proceedings, 1139, p 153–155 Aguiar VAP et al (2010) Absorbed gamma-ray doses due to natural radionuclides in building materials. In: Melville NY (ed) XXXII Brazilian workshop on nuclear physics. American Institute of Physics conference proceedings, 1245, pp 98–103 Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95 Orgun Y et al (2007) Natural andantrhopogenic radionuclides in rocks and bech sands from Ezine region (Çanakkale), Westerm Anatolia, Turkey. App Radiat Isot 64:739–747 Silveira MAG et al (2016) Revisiting natural radiation in Itacaré and Guarapari Beaches. J Nucl Phys Mater Radiat Appl 4:1–11 Rosenblum S, Brownfield IK (1999) Magnetic susceptibilities of minerals. Open-file report no. 99–529, U.S. Department of the Interior—U.S. Geological Survey Souza SHM et al (2016) Spatial sediment variability in a tropical tide dominated estuary: sources and drivers. J S Am Earth Sci 72:115–125 Aguiar VAP et al (2010) Scanning electron microscopy as a tool for studying environmental radiation. In: 17th international microscopy congress, IMC 17 proceedings