Khám Phá Sản Phẩm Tự Nhiên: Quá Khứ, Hiện Tại và Tương Lai

Leonard Katz1, Richard H. Baltz2
1Synthetic Biology Engineering Research Center, University of California-Berkeley, 5885 Hollis St. 4th Floor, Emeryville, CA, 94608, USA.
2CognoGen Biotechnology Consulting

Tóm tắt

Tóm tắt

Các vi sinh vật đã cung cấp nguồn tài nguyên phong phú của các sản phẩm tự nhiên, từ đó phát triển thành các sản phẩm thương mại phục vụ cho y học, sức khỏe động vật và bảo vệ cây trồng. Trong những năm đầu của việc phát hiện sản phẩm tự nhiên từ vi sinh vật (Thời Đại Vàng), các kháng sinh mới được tìm thấy một cách tương đối dễ dàng thông qua các phương pháp lên men có sản lượng thấp và sàng lọc toàn bộ tế bào. Sau đó, các phương pháp di truyền phân tử và hóa học dược phẩm đã được áp dụng để sửa đổi và cải thiện hoạt động của các khung hóa học quan trọng, và các phương pháp sàng lọc tinh vi hơn đã được hướng đến các trạng thái bệnh lý mục tiêu. Vào những năm 1990, ngành công nghiệp dược phẩm đã chuyển sang việc sàng lọc công suất cao các thư viện hóa chất tổng hợp nhằm vào nhiều mục tiêu điều trị tiềm năng, bao gồm cả các mục tiêu mới được xác định từ dự án giải trình tự gen người, phần lớn là để loại trừ các sản phẩm tự nhiên, và tỷ lệ phát hiện đã giảm mạnh. Tuy nhiên, các sản phẩm tự nhiên vẫn tiếp tục cung cấp các khung hóa học chính cho việc phát triển thuốc. Trong thiên niên kỷ hiện tại, thông qua giải trình tự gen, người ta phát hiện rằng các vi sinh vật có bộ gen lớn có khả năng sản xuất khoảng gấp mười lần số lượng chuyển hóa thứ cấp so với những gì đã được công nhận trước đó. Thực tế, các actinobacteria tài năng nhất có khả năng sản xuất khoảng 30–50 chuyển hóa thứ cấp. Với sự giảm mạnh trong chi phí giải trình tự gen, hiện nay có thể tiến hành giải trình tự hàng nghìn bộ gen actinobacteria để xác định "vật chất tối sinh học" như là nguồn cho việc phát hiện các chuyển hóa thứ cấp mới và độc đáo. Những tiến bộ trong sinh tin học, phổ khối, proteomics, transcriptomics, metabolomics và biểu hiện gen đang thúc đẩy lĩnh vực mới của việc khai thác bộ gen vi sinh vật nhằm ứng dụng trong việc phát hiện và phát triển sản phẩm tự nhiên.

Từ khóa


Tài liệu tham khảo

Aigle, 2014, Genome mining of Streptomyces ambofaciens, J Ind Microbiol Biotechnol, 41, 251, 10.1007/s10295-013-1379-y

Alberts, 1980, Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-CoA reductase and a cholesterol-lowering agent, Proc Natl Acad Sci USA, 77, 3957, 10.1073/pnas.77.7.3957

Alexander, 2010, Development of a genetic system for lipopeptide combinatorial biosynthesis in Streptomyces fradiae and heterologous expression of the A54145 biosynthetic gene cluster, Appl Environ Microbiol, 76, 6877, 10.1128/AEM.01248-10

Alexander, 2011, Production of novel lipopeptide antibiotics related to A54145 by Streptomyces fradiae mutants blocked in biosynthesis of modified amino acids and assignment of lptJ, lptK and lptL gene functions, J Antibiot, 64, 79, 10.1038/ja.2010.138

Amando, 2011, A cryptic antibiotic triggered by monensin, J Antibiot, 64, 703, 10.1038/ja.2011.69

Bachmann, 2014, Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?, J Ind Microbiol Biotechnol, 41, 175, 10.1007/s10295-013-1389-9

Baltz, 1982, Genetics and biochemistry of tylosin production: a model for genetic engineering in antibiotic-producing Streptomyces, Basic Life Sci, 19, 431

Baltz, 2005, Natural product discovery and development at Eli Lilly and Company: one scientists view, SIM News, 55, 5

Baltz, 2005, Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall?, SIM News, 55, 186

Baltz, 2006, Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes, SIM News, 56, 148

Baltz, 2006, Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration?, J Ind Microbiol Biotechnol, 33, 507, 10.1007/s10295-005-0077-9

Baltz, 2006, Molecular engineering approaches to peptide, polyketide and other antibiotics, Nat Biotechnol, 24, 1533, 10.1038/nbt1265

Baltz, 2007, Antimicrobials from actinomycetes: back to the future, Microbe, 2, 125

Baltz, 2008, Renaissance in antibacterial discovery from actinomycetes, Curr Opin Pharmacol, 8, 557, 10.1016/j.coph.2008.04.008

Baltz, 2010, Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters, J Ind Microbiol Biotechnol, 37, 759, 10.1007/s10295-010-0730-9

Baltz, 2011, Strain improvement in actinomycetes in the postgenomic era, J Ind Microbiol Biotechnol, 38, 657, 10.1007/s10295-010-0934-z

Baltz, 2011, Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery, J Ind Microbiol Biotechnol, 38, 1747, 10.1007/s10295-011-1022-8

Baltz, 2012, Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms), J Ind Microbiol Biotechnol, 39, 661, 10.1007/s10295-011-1069-6

Baltz, 2014, MbtH homology codes to identify gifted microbes for genome mining, J Ind Microbiol Biotechnol, 41, 357, 10.1007/s10295-013-1360-9

Baltz, 2014, Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways, ACS Synth Biol, 3, 748, 10.1021/sb3000673

Baltz, 2015, Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes, J Ind Microbiol Biotechnol

Baltz, 1981, Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin, Antimicrob Agents Chemother, 20, 214, 10.1128/AAC.20.2.214

Baranasic, 2013, Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin, Genome Announc, 1, e00581, 10.1128/genomeA.00581-13

Bentley, 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 417, 141, 10.1038/417141a

Bérdy, 2012, Thoughts and facts about antibiotics: where we are now and where we are heading, J Antibiot, 65, 385, 10.1038/ja.2012.27

Bhanot, 2011, Natural sources as potential anti-cancer agents: a review, Int J Phytomed, 3, 9

Bibb, 1978, Transformation of plasmid DNA into Streptomyces at high frequency, Nature, 274, 398, 10.1038/274398a0

Bierman, 1992, Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp, Gene, 116, 43, 10.1016/0378-1119(92)90627-2

Breton, 2013, Using NMR to identify and characterize natural products, Nat Prod Rep, 30, 501, 10.1039/c2np20104f

Butler, 2014, Natural product and natural product derived drugs in clinical trials, Nat Prod Rep, 31, 1612, 10.1039/C4NP00064A

Challis, 2014, Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways, J Ind Microbiol Biotechnol, 41, 219, 10.1007/s10295-013-1383-2

Charlop-Powers, 2015, Global biogeographic sampling of bacterial secondary metabolism, eLife, 4, e05048, 10.7554/eLife.05048

Cohen, 1973, Construction of biologically functional bacterial plasmids in vitro, Proc Natl Acad Sci USA, 70, 3240, 10.1073/pnas.70.11.3240

Cundliffe, 2008, Control of tylosin biosynthesis in Streptomyces fradiae, J Microbiol Biotechnol, 18, 1485

Debono, 1989, Synthesis and antimicrobial evaluation of 20-deoxo-20-(3,5-dimethylpiperidin-1-yl)desmycosin and related cyclic amino derivatives, J Antibiot, 42, 1253, 10.7164/antibiotics.42.1253

Demain, 2014, Importance of microbial natural products and the need to revitalize their discovery, J Ind Microbiol Biotechnol, 41, 185, 10.1007/s10295-013-1325-z

Denizot, 1986, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J Immunol Methods, 89, 271, 10.1016/0022-1759(86)90368-6

Denoya, 1995, A second branched-chain α-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins, J Bacteriol, 177, 3504, 10.1128/JB.177.12.3504-3511.1995

DiMarco, 1964, Daunomycin: a new antibiotic with anti-tumor activity, Cancer Chemother Rep, 38, 31

Dutta, 2014, Structure of a modular polyketide synthase, Nature, 510, 512, 10.1038/nature13423

Eisenstein, 2010, Daptomycin: from the mountain to the clinic with the essential help from Francis Tally, MD, Clin Inf Dis, 50, S10, 10.1086/647938

Endo, 1979, A new hypo-cholesteremic agent produced by a Monascus species, J Antibiot, 32, 852, 10.7164/antibiotics.32.852

Endo, 2010, A historical perspective on the discovery of the statins, Proc Jpn Acad Ser B, 86, 484, 10.2183/pjab.86.484

Epp, 1989, Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans, Gene, 85, 293, 10.1016/0378-1119(89)90421-6

Galm, 2015, Natural product derived insecticides: discovery and development of spinetoram, J Ind Microbiol Biotechnol

Gallo, 1971, Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin, J Nat Cancer Inst, 46, 789

Giddings, 2013, Microbial natural products: molecular blueprints for antitumor drugs, J Ind Microbiol Biotechnol, 40, 1181, 10.1007/s10295-013-1331-1

Gregory, 2005, Mutasynthesis of rapamycin analogues through the manipulation of a gene governing starter unit biosynthesis, Angew Chem Int Ed, 44, 4757, 10.1002/anie.200462784

Havlicek, 2013, Current trends in microbial diagnostics based on mass spectrometry, Anal Chem, 85, 790, 10.1021/ac3031866

Heeb, 2011, Quinolones: from antibiotics to autoinducers, FEMS Microbiol Rev, 35, 247, 10.1111/j.1574-6976.2010.00247.x

Heide, 2014, New aminocoumarin antibiotics as gyrase inhibitors, Int J Med Microbiol, 304, 31, 10.1016/j.ijmm.2013.08.013

Henderson, 1991, Comparison of the effects of FK-506, cyclosporine A and rapamycin on IL-2 production, Immunology, 73, 316

Hendlin, 1969, Phosphonomycin, a new antibiotic produced by strains of Streptomyces, Science, 166, 122, 10.1126/science.166.3901.122

Hertweck, 2015, Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology, Trends Biochem Sci, 40, 189, 10.1016/j.tibs.2015.02.001

Heusler, 2001, The controversial early history of cyclosporine, Swiss Med Wkly, 131, 299

Hur, 2012, Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology, Nat Prod Rep, 29, 1074, 10.1039/c2np20025b

Iftime, 2015, Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Tü 365, J Ind Microbiol Biotechnol

Ikeda, 2003, Complete genome sequence of and comparative analysis of the industrial microorganism Streptomyces avermitilis, Nat Biotechnol, 21, 526, 10.1038/nbt820

Ikeda, 2014, Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters, J Ind Microbiol Biotechnol, 41, 233, 10.1007/s10295-013-1327-x

Itoh, 1993, A modified method of mixed lymphocyte reaction: establishment of the assay system and its application to extracts of fungal cultures, J Antibiot, 46, 1575, 10.7164/antibiotics.46.1575

Johnston, 2015, Informatic search strategies to discover analogues and variants of natural product archetypes, J Ind Microbiol Biotechnol

Ju, 2015, Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes, Proc Natl Acad Sci USA, 112, 12175, 10.1073/pnas.1500873112

Kanomori, 1957, Studies on the antitumor activity of mitomycin, J Antibiot, 10, 120

Katz, 2015, Culture-independent discovery of natural products from soil metagenomes, J Ind Microbiol Biotechnol

Khaw, 1998, Mutational biosynthesis of rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase, J Bacteriol, 180, 89, 10.1128/JB.180.4.809-814.1998

Khosla, 2014, Assembly line polyketide synthases: mechanistic insights and unsolved problems, Biochemistry, 53, 2875, 10.1021/bi500290t

Kim, 2015, Reinvigorating natural product combinatorial biosynthesis with synthetic biology, Nat Chem Biol, 11, 649, 10.1038/nchembio.1893

Kinch, 2014, An overview of FDA-approved new molecular entities: 1827–2013, Drug Discov Today, 19, 1033, 10.1016/j.drudis.2014.03.018

Kirst, 2010, The spinosyn family of insecticides: realizing the potential of natural products research, J Antibiot, 63, 101, 10.1038/ja.2010.5

Koehn, 2005, The evolving role of natural products in drug discovery, Nat Rev Drug Discov, 4, 206, 10.1038/nrd1657

Kudo, 2009, Biosynthesis genes for aminoglycoside antibiotics, J Antibiot, 62, 471, 10.1038/ja.2009.76

Kustoss, 1996, Production of a novel polyketide through the construction of a hybrid polyketide synthase, Gene, 183, 231, 10.1016/S0378-1119(96)00565-3

Ladner, 2015, Harnessing natural product assembly lines: structure, promiscuity, and engineering, J Ind Microbiol Biotechnol

Lay, 2015, Next-generation antimicrobials: from chemical biology to first-in-class drugs, Arch Pharm Res, 38, 1702, 10.1007/s12272-015-0645-0

Martel, 1977, Inhibition of the immune response by rapamycin, a new antifungal antibiotic, Can J Physiol Pharmacol, 55, 48, 10.1139/y77-007

Matsushima, 1985, Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts, J Bacteriol, 163, 180, 10.1128/JB.163.1.180-185.1985

McDaniel, 1999, Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products, Proc Natl Acad Sci USA, 96, 1846, 10.1073/pnas.96.5.1846

Medema, 2015, Computational approaches to natural product discovery, Nat Chem Biol, 11, 639, 10.1038/nchembio.1884

Milshteyn, 2014, Mining the metabiome: identifying novel natural products from microbial communities, Chem Biol, 21, 1211, 10.1016/j.chembiol.2014.08.006

Minas, 2000, Streptomycetes in microcultures: growth production of secondary metabolites, and storage and retrieval in the 96 well format, Antonie Van Leeuwenhoek, 78, 297, 10.1023/A:1010254013352

Moffat, 2014, Phenotypic screening in cancer drug discovery—past, present and future, Nat Rev Drug Discov, 13, 588, 10.1038/nrd4366

Mossman, 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays, J Immunol Methods, 65, 55, 10.1016/0022-1759(83)90303-4

Nagarajan, 1971, β-Lactam antibiotics from Streptomyces, J Am Chem Soc, 93, 2308, 10.1021/ja00738a035

Nett, 2009, Genomic basis for natural product biosynthetic diversity in the actinomycetes, Nat Prod Rep, 26, 1362, 10.1039/b817069j

Newman, 2000, The influence of natural products upon drug discovery, Nat Prod Rep, 17, 214, 10.1039/a902202c

Newman, 2012, Natural products as sources of new drugs over the 30 years from 1981 to 2010, J Nat Prod, 75, 311, 10.1021/np200906s

Nguyen, 2006, Combinatorial biosynthesis of lipopeptide antibiotics related to daptomycin, Proc Natl Acad Sci USA, 103, 17462, 10.1073/pnas.0608589103

Nguyen, 2010, Engineered hybrid lipopeptide antibiotics related to A54145 and daptomycin with improved properties, Antimicrob Agents Chemother, 54, 1404, 10.1128/AAC.01307-09

Ochi, 2014, Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements, J Ind Microbiol Biotechnol, 41, 403, 10.1007/s10295-013-1349-4

Ohnishi, 2008, Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350, J Bacteriol, 190, 4050, 10.1128/JB.00204-08

Olano, 2010, Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis, Nat Prod Rep, 27, 571, 10.1039/b911956f

Olano, 2011, Molecular insights on the biosynthesis of antitumor compounds by actinomycetes, Microb Biotechnol, 4, 144, 10.1111/j.1751-7915.2010.00231.x

Olynyk, 1996, A hybrid modular polyketide synthase obtained by domain swapping, Chem Biol, 3, 833, 10.1016/S1074-5521(96)90069-1

Owen, 2015, Multiplexed metagenomic mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors, Proc Natl Acad Sci USA, 112, 4221, 10.1073/pnas.1501124112

Paradkar, 2013, Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement, J Antibiot, 66, 411, 10.1038/ja.2013.26

Payne, 2007, Bad drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat Rev Drug Discov, 6, 29, 10.1038/nrd2201

Perlman, 1971, Biosynthesis of peptide antibiotics, Annu Rev Biochem, 40, 449, 10.1146/annurev.bi.40.070171.002313

Reading, 1977, Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus, Antimicrob Agents Chemother, 11, 852, 10.1128/AAC.11.5.852

Reeves, 2004, Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in Streptomyces fradiae hosts, Chem Biol, 11, 1466, 10.1016/j.chembiol.2004.08.019

Ruan, 1997, Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives, J Bacteriol, 179, 6416, 10.1128/JB.179.20.6416-6425.1997

Rudolf, 2015, Genome neighborhood network reveals insights into enediyne biosynthesis and facilitates prediction and prioritization for discovery, J Ind Microbiol Biotechnol

Schmitt, 2015, Natural products as probes in pharmaceutical research, J Ind Microbiol Biotechnol

Shier, 1969, Preparation of four new antibiotics from a mutant of Streptomyces fradiae, Proc Natl Acad Sci USA, 63, 198, 10.1073/pnas.63.1.198

Shoemaker, 2006, The NCI60 human tumour cell line anticancer drug screen, Nat Rev Cancer, 6, 813, 10.1038/nrc1951

Skinnider, 2015, Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM), Nucleic Acids Res, 43, 9645

Smanski, 2015, Leveraging ecological theory to guide natural product discovery, J Ind Microbiol Biotechnol

Solenberg, 1997, Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis, Chem Biol, 4, 195, 10.1016/S1074-5521(97)90288-X

Sparks, 2008, Neural network-based QSAR and insecticide discovery: spinetoram, J Comput Aided Mol Des, 22, 393, 10.1007/s10822-008-9205-8

Stähelin, 1996, The history of cyclosporine A (Sandimmun®) revisited: another point of view, Experientia, 52, 5, 10.1007/BF01922409

Stapley, 1969, Phosphonomycin. I. Discovery and in vitro biological characterization, Antimicrob Agents Chemother, 9, 284

Strieker, 2010, Nonribosomal peptide synthetases: structure and dynamics, Curr Opin Struct Biol, 7, 77

Strohl, 2001, The history of natural products research at Merck & Co, SIM News, 51, 5

Summers, 1997, Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster from Saccharopolyspora erythraea that are involved in l-mycarose and d-desosamine production, Microbiology, 143, 3251, 10.1099/00221287-143-10-3251

Swinney, 2011, How were new medicines discovered?, Nat Rev Drug Discov, 10, 507, 10.1038/nrd3480

Tanaka, 2015, Streptomyces metabolites in divergent microbial interactions, J Ind Microbiol Biotechnol

Tang, 2000, Formation of functional heterologous complexes using subunits from the pikromycin, erythromycin and oleandomycin synthases, Chem Biol, 7, 77, 10.1016/S1074-5521(00)00073-9

Tang, 2005, Generation of new epothilones by genetic engineering of a polyketide synthase in Myxococcus xanthus, J Antibiot, 58, 178, 10.1038/ja.2005.20

Terstappen, 2007, Target deconvolution strategies in drug discovery, Nat Rev Drug Discov, 6, 891, 10.1038/nrd2410

Thaker, 2014, Antibiotic resistance-mediated isolation of scaffold-specific natural product producers, Nat Protoc, 9, 1469, 10.1038/nprot.2014.093

Umezawa, 1965, Bleomycin and other antibiotics of high molecular weight, Antimicrob Agents Chemother, 5, 1079

Vezina, 1975, Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle, J Antibiot, 28, 721, 10.7164/antibiotics.28.721

Wagman, 1980, Antibiotic from Micromonospora, Ann Rev Microbiol, 34, 537, 10.1146/annurev.mi.34.100180.002541

Waldron, 2001, Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa, Chem Biol, 8, 487, 10.1016/S1074-5521(01)00029-1

Weber, 2015, antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res, 43, w237, 10.1093/nar/gkv437

Weinstein, 2004, Micromonospora antibiotic discovery at Schering/Schering Plough (1961–1973), SIM News, 54, 56

Weissman, 2015, The structural biology of biosynthetic megaenzymes, Nat Chem Biol, 11, 660, 10.1038/nchembio.1883

Weist, 2005, Mutational biosynthesis—a tool for the generation of structural diversity in the biosynthesis of antibiotics, Appl Microbiol Biotechnol, 68, 141, 10.1007/s00253-005-1891-8

Whicher, 2014, Structural rearrangements of a polyketide synthase module during its catalytic cycle, Nature, 510, 560, 10.1038/nature13409

Wright, 2007, The antibiotic resistome: the nexus of chemical and genetic diversity, Nat Rev Microbiol, 5, 175, 10.1038/nrmicro1614

Wu, 2015, Metabolic profiling as a tool for prioritizing antimicrobial compounds, J Ind Microbiol Biotechnol

Yoon, 2014, Activating secondary metabolism with stress and chemicals, J Ind Microbiol Biotechnol, 41, 415, 10.1007/s10295-013-1387-y

Zhu, 2014, Triggers and cues that activate antibiotic production by actinomycetes, J Ind Microbiol Biotechnol, 41, 371, 10.1007/s10295-013-1309-z

Zhu, 2015, Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of Acetylisovaleryltylosin, J Ind Microbiol Biotechnol, 42, 105, 10.1007/s10295-014-1545-x