Natural functions of antibiotics as “informbiotics”

P. A. Kozhevin1, Katerina A. Vinogradova2, В Г Булгакова2
1Department of Soil Science, Moscow State University, Moscow, Russia
2Department of Biology, Moscow State University, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bulgakova, V.G., Vinogradova, K.A., Orlova, T.I., et al., Antibiotics activity as signal molecules, Antibiot. Khimioter., 2014, nos. 1–2.

Vinogradova, K.A. and Kozhevin, P.A., Actinomycetes interaction with soil fungi and their application for plant pathogens biological monitoring. Review, Mikol. Fitopatol., 2011, vol. 45, no. 4.

Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Foundations of Antibiotic Theory), Moscow, 1969.

Zvyagintsev, D.G., Vinogradova, K.A., and Efremenkova, L.M., Direct microscopic detection of luminescent antibiotic actinomycete-producer in a soil, Mikrobiologiya, 1976, vol. 45, no. 2.

Kozhevin, P.A., Mikrobnye populyatsii v prirode (Microbial Populations in Nature), Moscow, 1989.

Kozhevin, P.A., Ecology of soil microorganisms, in Ekologiya mikroorganizmov (Microorganisms Ecology), Netrusov, A.I., Ed., Moscow, 2004.

Kozhevin, P.A., Vinogradova, K.A., and Bulgakova, V.G., The soil antibiotic resistome, Moscow Univ. Soil Sci. Bull., 2013, vol. 68, no. 2, p. 53.

Ahmed, N.A., Petersen, F.C., and Scheie, A.A., AI-LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics, Antimicrob. Agents Chemother., 2009, vol. 53, no. 10.

Aminov, R.I., The role of antibiotics resistance in nature, Environ. Microbiol., 2009, vol. 11, no. 12.

Aminov, R.I., Horizontal gene exchange in environmental microbiota, Front. Microbiol., 2011, no. 2.

Anukool, U., Gase, W.H., and Wellington, E.M., In situ monitoring of streptothricin production by Streptomyces rochei F20 in soil and rhizosphere, Appl. Environ. Microbiol., 2004, vol. 70, no. 9.

Babic’, F., Venturi, V., and Maravic’-Vlahovicek, G., Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a pseudomonas aeruginosa environmental isolate, BMC Infect. Dis., 2010, vol. 10, p. 148.

Beausejour, J., Agbessi, S., and Beaulieu, C., Geldanamycin producing strains as biocontrol agents against common scab of potato, Can. J. Plant Pathol., 2001, vol. 23, p. 194.

Bernier, S.P. and Surette, M.G., Concentrationdependent activity of antibiotics in natural environment, Front. Microbiol., 2013, no. 1.

Blázques, J., Couce, A., Rodrígues-Beltrán, J., and Rodrígues-Fojas, A., Antimicrobials as promoters of genetic variation, Curr. Opin. Microbiol., 2012, vol. 15, no. 5.

Chandler, Y., Kumar, K., Goyal, S.M., and Gupta, S.C., Antibacterial activity of soil-bound antibiotics, J. Environ. Qual., 2005, vol. 34, no. 6.

Dantas, G., Sommer, M.O.A., Oluwasegun, R.D., and Church, G.M., Bacteria subsisting on antibiotics, Science, 2008, vol. 320, no. 4.

Da Re, S. and Ploy, M.C., Resistance acquisition via bacterial SOS response: the inductive role of antibiotics, Med. Sci. (Paris), 2012, vol. 28, no. 2.

Davies, J., Darwin and microbiomes, EMBO Rep., 2009, vol. 10, no. 8.

Davies, J., Spiegelman, G.B., and Yim, G., The world of subinhibitory antibiotic concentrations, Curr. Opin. Microbiol., 2006, no. 9.

Decho, A.W., Frey, R.L., and Ferry, J.L., Chemical challenges to bacterial AHL signaling in the environment, Chem. Rev., 2011, vol. 111, no. 1.

Dietrich, L.E., Teal, T.K., Price-Whelan, A., and Newman, D.K., Redox-active antibiotics control gene expression and community behavior in divergent bacteria, Science, 2008, vol. 321, no. 8.

Fajardo, A. and Matrinez, J.L., Antibiotics as signals that trigger bacterial responses, Curr. Opin. Microbiol., 2008, vol. 11, no. 2.

Goh, E.B., Yim, G., Tsui, W., et al., Transcription modulation of bacterial gene expression by subinhibitory concentrations of antibiotics, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 26.

Hansen, L.H., Ferrari, B., and Sorensen, S.J., Detection of oxytetracycline production by streptomyces rimosus in soil microcosms by combining whole cell biosensor and flow cytometry, Appl. Environ. Microbiol., 2001, vol. 67, no. 1.

Hoffman, L.R., D’Argenio, D.A., Maccoss, M.J., et al., Aminoglycoside antibiotics induce bacterial biofilm formation, Nature, 2005, vol. 436, no. 7054.

Hoffmann, N., Lee, B., Hentzer, M., et al., Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice, Antimicrob. Agents Chemother., 2007, vol. 51, no. 10.

Ichimiya, T., Takeoka, K., Hiramatsu, K., et al., The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro, Chemotherapy, 1996, vol. 42, no. 3.

Kaplan, J.B., Antibiotic induced biofilm formation, Int. J. Artif. Organ., 2011, vol. 34, no. 9.

Kuroda, H., Kuroda, M., Cui, L., and Hiramatsu, K., Subinhibitory concentrations of β-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS two-component system, FEMS Microbiol. Lett., 2007, vol. 268, no. 1.

Linares, J.F., Gustafsson, I., Baquero, F., and Martinez, J.L., Antibiotics as intermicrobial signaling agents instead of weapons, Proc. Natl. Acad. Sci. U.S.A, 2006, vol. 103, no. 51.

Maiques, E., U’beda, C., Camroy, S., et al., β-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus, J. Bacteriol., 2006, vol. 188, no. 7.

Mesak, L.R., Miao, V., and Davies, J., Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus, Antimicrob. Agents Chemother., 2008, vol. 52, no. 9.

Nalca, Y., Jänsch, L., Bredenbruch, F.R., et al., Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach, Antimicrob. Agents Chemother., 2006, vol. 50, no. 5.

Ng, W.L., Kazmierczak, K.M., Robertson, G.T., et al., Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors, J. Bacteriol., 2003, vol. 185, no. 1.

Raaijmakers, J.M. and Mazzola, M., Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria, Annu. Rev. Phytopathol., 2012, vol. 50, pp. 403–424.