Natural and designer binding sites made by phage display technology
Tóm tắt
Từ khóa
Tài liệu tham khảo
Morrison, 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, Proc. Natl. Acad. Sci. U. S. A., 81, 6851, 10.1073/pnas.81.21.6851
Jones, 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321, 522, 10.1038/321522a0
Hudson, 1998, Recombinant antibody fragments, Curr. Opin. Biotechnol., 9, 395, 10.1016/S0958-1669(98)80014-1
Orlandi, 1989, Cloning immunoglobulin variable domains for expression by the polymerase chain reaction, Proc. Natl. Acad. Sci. U. S. A., 86, 3833, 10.1073/pnas.86.10.3833
Chiang, 1989, Direct cDNA cloning of the rearranged immunoglobulin variable region, Biotechniques, 7, 360
Ward, 1989, Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli, Nature, 341, 544, 10.1038/341544a0
Huse, 1989, Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda, Science, 246, 1275, 10.1126/science.2531466
Better, 1988, Escherichia coli secretion of an active chimeric antibody fragment, Science, 240, 1041, 10.1126/science.3285471
Skerra, 1988, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science, 240, 1038, 10.1126/science.3285470
McCafferty, 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature, 348, 552, 10.1038/348552a0
Hoogenboom, 1991, Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains, Nucleic Acids Res., 19, 4133, 10.1093/nar/19.15.4133
Garrard, 1991, Fab assembly and enrichment in a monovalent phage display system, Biotechnology, 9, 1373, 10.1038/nbt1291-1373
Chang, 1991, Expression of antibody Fab domains on bacteriophage surfaces, J. Immunology, 147, 3610, 10.4049/jimmunol.147.10.3610
McGuinness, 1996, Phage diabody repertoires for selection of large numbers of bispecific antibody fragments, Nat. Biotechnol., 14, 1149, 10.1038/nbt0996-1149
Clackson, 1991, Making antibody fragments using phage display libraries, Nature, 352, 624, 10.1038/352624a0
Persson, 1991, Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning, Proc. Natl. Acad. Sci. U. S. A., 88, 2432, 10.1073/pnas.88.6.2432
Burton, 1991, A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic individuals, Proc. Natl. Acad. Sci. U. S.A., 88, 10134, 10.1073/pnas.88.22.10134
Graus, 1997, Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies, J. Immunol., 158, 1919, 10.4049/jimmunol.158.4.1919
Cai, 1995, Anti-melanoma antibodies from melanoma patients immunised with genetically modified autologous tumor cells, Proc. Natl. Acad. Sci. U. S. A., 92, 6537, 10.1073/pnas.92.14.6537
Marks, 1991, By-passing immunization: human antibodies from V-gene libraries displayed on phage, J. Mol. Biol., 221, 581, 10.1016/0022-2836(91)90498-U
Barbas, 1992, Semisynthetic combinatorial libraries: a chemical solution to the diversity problem, Proc. Natl. Acad. Sci. U. S. A., 89, 4457, 10.1073/pnas.89.10.4457
Winter, 1994, Making antibody by phage display technology, Annu. Rev. Immunol., 12, 433, 10.1146/annurev.iy.12.040194.002245
Hoogenboom, 1998, Antibody phage display technology and its applications, Immunotechnology, 4, 1, 10.1016/S1380-2933(98)00007-4
Dall’Acqua, 1998, Antibody engineering, Curr. Opin. Struct. Biol., 8, 443, 10.1016/S0959-440X(98)80121-8
Hanes, 1997, In vitro selection and evolution of functional proteins by using ribosome display, Proc. Natl. Acad. Sci. U. S. A., 94, 4937, 10.1073/pnas.94.10.4937
Georgiou, 1997, Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines, Nat. Biotechnol., 15, 29, 10.1038/nbt0197-29
Boder, 1997, Yeast surface display for screening combinatorial polypeptide libraries, Nat. Biotechnol., 15, 553, 10.1038/nbt0697-553
Hoogenboom, 1997, Designing and optimizing library selection strategies for generating high-affinity antibodies, Trends Biotechnol., 15, 62, 10.1016/S0167-7799(97)84205-9
de Haard, 1999, A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies, J. Biol. Chem., 274, 18218, 10.1074/jbc.274.26.18218
Horn, 1999, Selection of phage-displayed Fab antibodies on the active conformation of Ras yields a high affinity conformation-specific antibody preventing the binding of c-Raf kinase to Ras, FEBS Lett., 463, 115, 10.1016/S0014-5793(99)01617-8
Chames, P. et al. Direct selection of a human antibody fragment binding to the tumor T cell epitope HLA-A1/MAGE-A1 from a non immunized phage–Fab library. Proc. Natl. Acad. Sci. U. S. A. (in press)
Osbourn, 1998, Pathfinder selection: in situ isolation of novel antibodies, Immunotechnology, 3, 293, 10.1016/S1380-2933(97)10007-0
Hoogenboom, 1999, Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library, Eur. J. Biochem., 260, 774, 10.1046/j.1432-1327.1999.00214.x
Proba, 1998, Antibody scFv fragments without disulfide bonds made by molecular evolution, J. Mol. Biol., 275, 245, 10.1006/jmbi.1997.1457
Kristensen, 1998, Proteolytic selection for protein folding using filamentous bacteriophages, Fold. Des., 3, 321, 10.1016/S1359-0278(98)00044-3
Gargano, 1997, Rescue of a neutralizing anti-viral antibody fragment from an intracellular polyclonal repertoire expressed in mammalian cells, FEBS Lett., 414, 537, 10.1016/S0014-5793(97)01065-X
Jung, 1999, Selectively infective phage (SIP) technology: scope and limitations, J. Immunol. Methods, 231, 93, 10.1016/S0022-1759(99)00143-X
Borrebaeck, 1998, Tapping the potential of molecular libraries in functional genomics, Immunol. Today, 19, 524, 10.1016/S0167-5699(98)01329-2
Ridgway, 1999, Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines, Cancer Res., 59, 2718
Lueking, 1999, Protein microarrays for gene expression and antibody screening, Anal. Biochem., 270, 103, 10.1006/abio.1999.4063
Hawkins, 1992, Cell selection strategies for making antibodies from variable gene libraries, Eur. J. Immunol., 22, 867, 10.1002/eji.1830220336
Sheets, 1998, Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens, Proc. Natl. Acad. Sci. U. S. A., 95, 6157, 10.1073/pnas.95.11.6157
Vaughan, 1996, Human antibody with sub-nanomolar affinities isolated from a large non-immunized phage display library, Nat. Biotechnol., 14, 309, 10.1038/nbt0396-309
Griffiths, 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, EMBO J., 13, 3245, 10.1002/j.1460-2075.1994.tb06626.x
Sblattero, 2000, Exploiting recombination in single bacteria to make large phage antibody libraries, Nat. Biotechnol., 18, 75, 10.1038/71958
Hudson, 1999, High avidity scFv multimers; diabodies and triabodies, J. Immunol. Methods, 231, 177, 10.1016/S0022-1759(99)00157-X
de Wildt, 1999, Somatic insertions and deletions shape the human antibody repertoire, J. Mol. Biol., 294, 701, 10.1006/jmbi.1999.3289
Foote, 1995, Kinetic and affinity limits on antibodies produced during immune responses, Proc. Natl. Acad. Sci. U. S. A., 92, 1254, 10.1073/pnas.92.5.1254
Schier, 1996, Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site, J. Mol. Biol., 263, 551, 10.1006/jmbi.1996.0598
Yang, 1995, CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range, J. Mol. Biol., 254, 392, 10.1006/jmbi.1995.0626
Ohlin, 1996, Light chain shuffling of a high affinity antibody results in a drift in epitope recognition, Mol. Immunol., 33, 47, 10.1016/0161-5890(95)00123-9
Hoogenboom, 1992, By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro, J. Mol. Biol., 227, 381, 10.1016/0022-2836(92)90894-P
Nissim, 1994, Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents, EMBO J., 13, 692, 10.1002/j.1460-2075.1994.tb06308.x
Garrard, 1993, Selection of an anti-IGF-1 Fab from a Fab phage library created by mutagenesis of multiple CDR loops, Gene, 128, 103, 10.1016/0378-1119(93)90160-5
Soderlind, 1995, Domain libraries: synthetic diversity for de novo design of antibody V regions, Gene, 160, 269, 10.1016/0378-1119(95)00200-P
Pini, 1998, Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel, J. Biol. Chem., 273, 21769, 10.1074/jbc.273.34.21769
Jirholt, 1998, Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework, Gene, 215, 471, 10.1016/S0378-1119(98)00317-5
Lamminmaki, 1999, Expanding the conformational diversity by random insertions to CDRH2 results in improved anti-estradiol antibodies, J. Mol. Biol., 291, 589, 10.1006/jmbi.1999.2981
Kirkham, 1999, Towards the design of an antibody that recognises a given protein epitope, J. Mol. Biol., 285, 909, 10.1006/jmbi.1998.2336
Winter, 1990, Gene technologies for antibody engineering, Behring. Inst. Mitt., 87, 10
Knappik, 2000, Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides, J. Mol. Biol., 296, 57, 10.1006/jmbi.1999.3444
Arbabi Ghahroudi, 1997, Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, FEBS Lett., 414, 521, 10.1016/S0014-5793(97)01062-4
Davies, 1996, Single antibody domains as small recognition units, Protein Eng., 9, 531, 10.1093/protein/9.6.531
Reiter, 1999, An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface, J. Mol. Biol., 290, 685, 10.1006/jmbi.1999.2923
McConnell, 1995, Tendamistat as a scaffold for conformationally constrained phage peptide libraries, J. Mol. Biol., 250, 460, 10.1006/jmbi.1995.0390
Koide, 1998, The fibronectin type III domain as a scaffold for novel binding proteins, J. Mol. Biol., 284, 1141, 10.1006/jmbi.1998.2238
Hufton, 2000, Development and application of cytotoxic T lymphocyte–associated antigen 4 as a protein scaffold for the generation of novel binding ligands, FEBS Lett., 475, 225, 10.1016/S0014-5793(00)01701-4
Nygren, 1997, Scaffolds for engineering novel binding sites in proteins, Curr. Opin. Struct. Biol., 7, 463, 10.1016/S0959-440X(97)80108-X
Jespers, 1994, Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen, Biotechnology, 12, 899, 10.1038/nbt0994-899
Begent, 1996, Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library, Nat. Med., 2, 979, 10.1038/nm0996-979
Schier, 1996, Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site, J. Mol. Biol., 263, 551, 10.1006/jmbi.1996.0598
Henderikx, 1998, Human single-chain Fv antibodies to MUC1 core peptide selected from phage display libraries recognize unique epitopes and predominantly bind adenocarcinoma, Cancer Res., 58, 4324
Birchler, 1999, Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment, Nat. Biotechnol., 17, 984, 10.1038/13679
Beiboer, 2000, Guided selection of a pan carcinoma specific antibody reveals similar binding characteristics yet structural divergence between the original murine antibody and its human equivalent, J. Mol. Biol., 296, 833, 10.1006/jmbi.2000.3512