Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode

Matter - Tập 1 Số 5 - Trang 1215-1231 - 2019
Yang Zhao1, Maedeh Amirmaleki2, Qian Sun1, Changtai Zhao1, Anastasia M Codirenzi3, Lyudmila V. Goncharova3, Changhong Wang1, Keegan R. Adair1, Xia Li1, Xiaofei Yang1, Feipeng Zhao1, Ruying Li1, Tobin Filleter2, Mei Cai4, Xueliang Sun1
1Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
2Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
3Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7, Canada
4General Motors R&D Center, Warren, MI 48090-9055, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16

Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114

Lu, 2018, High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 1, 35, 10.1007/s41918-018-0001-4

Zhang, 2018, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries, Sci. Adv., 4, eaar4410, 10.1126/sciadv.aar4410

Xin, 2017, Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects, ACS Energy Lett., 2, 1385, 10.1021/acsenergylett.7b00175

Tan, 2018, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries, Electrochem. Energy Rev., 1, 113, 10.1007/s41918-018-0011-2

Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32

Liu, 2016, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7, 10992, 10.1038/ncomms10992

Zhao, 2018, Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes, Nano Energy, 43, 368, 10.1016/j.nanoen.2017.11.032

Zhao, 2018, Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers, Energy Storage Mater., 15, 415, 10.1016/j.ensm.2018.07.015

Wood, 2017, Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior, ACS Energy Lett., 2, 664, 10.1021/acsenergylett.6b00650

Kim, 2018, Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries, Nat. Energy, 3, 889, 10.1038/s41560-018-0237-6

Yang, 2018, Structural design of lithium-sulfur batteries: from fundamental research to practical application, Electrochem. Energy Rev., 1, 239, 10.1007/s41918-018-0010-3

Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K

Liu, 2017, Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries, Sci. Adv., 3, eaao0713, 10.1126/sciadv.aao0713

Ma, 2017, Stable artificial solid electrolyte interphases for lithium batteries, Chem. Mater., 29, 4181, 10.1021/acs.chemmater.6b03687

Gu, 2018, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nat. Commun., 9, 1339, 10.1038/s41467-018-03466-8

Pang, 2018, Elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating, Proc. Natl. Acad. Sci. U S A, 115, 12389, 10.1073/pnas.1809187115

Liao, 2018, Developing a "water-defendable" and "dendrite-free" lithium-metal anode using a simple and promising GeCl4 pretreatment method, Adv. Mater., 30, 1705711, 10.1002/adma.201705711

Xie, 2017, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Sci. Adv., 3, eaao3170, 10.1126/sciadv.aao3170

Yan, 2018, An armored mixed conductor interphase on a dendrite-free lithium-metal anode, Adv. Mater., 30, 1804461, 10.1002/adma.201804461

Wei, 2018, Electrochemical interphases for high-energy storage using reactive metal anodes, Acc. Chem. Res., 51, 80, 10.1021/acs.accounts.7b00484

Kozen, 2015, Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 9, 5884, 10.1021/acsnano.5b02166

Kazyak, 2015, Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments, Chem. Mater., 27, 6457, 10.1021/acs.chemmater.5b02789

Cha, 2018, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat. Nanotechnol., 13, 337, 10.1038/s41565-018-0061-y

Yan, 2018, Mixed ionic and electronic conductor for Li-metal anode protection, Adv. Mater., 30, 1705105, 10.1002/adma.201705105

Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526

Liu, 2017, Garnet solid electrolyte protected Li-metal batteries, ACS Appl. Mater. Interfaces, 9, 18809, 10.1021/acsami.7b03887

Zhao, 2018, Robust metallic lithium anode protection by the molecular-layer-deposition technique, Small Methods, 2, 1700417, 10.1002/smtd.201700417

Chen, 2018, Directly formed alucone on lithium metal for high-performance Li batteries and Li-S batteries with high sulfur mass loading, ACS Appl. Mater. Interfaces, 10, 7043, 10.1021/acsami.7b15879

Gao, 2019, Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions, Nat. Mater., 18, 384, 10.1038/s41563-019-0305-8

Gao, 2017, Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries, J. Am. Chem. Soc., 139, 15288, 10.1021/jacs.7b06437

Cheng, 2018, Electronic and ionic channels in working interfaces of lithium metal anodes, ACS Energy Lett., 3, 1564, 10.1021/acsenergylett.8b00526

Vaughey, 2014, Stabilizing the surface of lithium metal, MRS Bull., 39, 429, 10.1557/mrs.2014.88

Yan, 2018, Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition, Adv. Mater., 30, 1707629, 10.1002/adma.201707629

Meng, 2012, Emerging applications of atomic layer deposition for lithium-ion battery studies, Adv. Mater., 24, 3589, 10.1002/adma.201200397

Zhao, 2018, Molecular layer deposition for energy conversion and storage, ACS Energy Lett., 3, 899, 10.1021/acsenergylett.8b00145

Zhao, 2018, Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition, Joule, 2, 2583, 10.1016/j.joule.2018.11.012

Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581

Zhao, 2017, Superior stable and long life sodium metal anodes achieved by atomic layer deposition, Adv. Mater., 29, 1606663, 10.1002/adma.201606663

Zhao, 2017, Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode, Nano Lett., 17, 5653, 10.1021/acs.nanolett.7b02464

Meng, 2017, An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: mechanisms, growth characteristics, and promising applications, J. Mater. Chem. A, 5, 18326, 10.1039/C7TA04449F

Gao, 2017, Design and properties of confined nanocatalysts by atomic layer deposition, Acc. Chem. Res., 50, 2309, 10.1021/acs.accounts.7b00266

Meng, 2017, Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology, Mater. Horiz., 4, 133, 10.1039/C6MH00521G

Chen, 2017, Lithium metal protected by atomic layer deposition metal oxide for high performance anodes, J. Mater. Chem. A, 5, 12297, 10.1039/C7TA03116E

Xiao, 2015, A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers, Nanoscale Res. Lett., 10, 130, 10.1186/s11671-015-0838-y

Yoon, 2017, Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes, ACS Appl. Mater. Interfaces, 9, 5399, 10.1021/acsami.6b15404

Sundberg, 2014, Organic and inorganic-organic thin film structures by molecular layer deposition: a review, Beilstein J. Nanotechnol., 5, 1104, 10.3762/bjnano.5.123

Piper, 2014, Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition, Adv. Mater., 26, 1596, 10.1002/adma.201304714

Peng, 2009, “Zincone” zinc oxide-organic hybrid polymer thin films formed by molecular layer deposition, Chem. Mater., 21, 820, 10.1021/cm8020403

Park, 2016, Intramolecular and intermolecular interactions in hybrid organic-inorganic alucone films grown by molecular layer deposition, ACS Appl. Mater. Interfaces, 8, 17489, 10.1021/acsami.6b01856

Ban, 2016, Molecular layer deposition for surface modification of lithium-ion battery electrodes, Adv. Mater. Interfaces, 3, 1600762, 10.1002/admi.201600762

Cao, 2017, Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures, Nanoscale, 9, 11678, 10.1039/C7NR03049E