Nascent disentangled UHMWPE: Origin, synthesis, processing, performances and applications

European Polymer Journal - Tập 184 - Trang 111799 - 2023
Sheng-Li Wu1, Junfei Qiao1, Jintao Guan1, Hong-Mei Chen1, Tielin Wang2, Cunwen Wang2, Yi Wang2
1School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
2Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

Tài liệu tham khảo

Anonymous. ASTM D4020-18 2018; Accessed Apr 2020 (15 pp). Patil, 2020, UHMWPE for biomedical applications: Performance and functionalization, Eur. Polym. J., 125, 10.1016/j.eurpolymj.2020.109529 Antonov, 2021, Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: Recent advances, Eur. Polym. J., 142, 10.1016/j.eurpolymj.2020.110162 Patel, 2020, Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications, Prog. Polym. Sci., 109, 101290, 10.1016/j.progpolymsci.2020.101290 Sharma, 2005, Easily processable ultra high molecular weight polyethylene with narrow molecular weight distribution, Technische Universiteit Eindhoven G. Strobl, The physics of polymers, third ed., Springer, Berlin, 2007. de Gennes, 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys., 55, 572, 10.1063/1.1675789 Talebi, 2008, Disentangled polyethylene with sharp molar mass distribution: Implications for sintering, Technische Universiteit Eindhoven Liu, 2016, Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of UHMWPE: Influence on crystallization without and with graphene oxide, Macromolecules, 49, 7497, 10.1021/acs.macromol.6b01173 P. Smith, P.J. Lemstra, Preparing polyethylene filaments, SE 443164 assigned to Stamicarbon BV, 1986. Lemstra, 1985, Speciality products based on commodity polymers, Polymer, 26, 1372, 10.1016/0032-3861(85)90315-5 Smith, 1981, Ultradrawing of high-molecular-weight polyethylene cast from solution. II. Influence of initial polymer concentration, J. Polym. Sci.: Polym. Phys. Ed., 19, 877 C.W.M. Bastiaansen, Oriented structures based on flexible polymers: Drawing behaviour and properties, Technische Universiteit Eindhoven, 1991. Capaccio, 1974, Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties, Polymer, 15, 233, 10.1016/0032-3861(74)90038-X Capaccio, 1975, Effect of molecular weight on the morphology and drawing behaviour of melt crystallized linear polyethylene, Polymer, 16, 239, 10.1016/0032-3861(75)90164-0 Lemstra, 1986, Chain-extended flexible polymers, Angew. Makromol. Chem., 145, 343, 10.1002/apmc.1986.051450117 Bastiaansen, 1990, Memory effects in polyethylenes: influence of processing and crystallization history, Polymer, 31, 1435, 10.1016/0032-3861(90)90147-Q Barham, 1991, A neutron scattering study of the melting behaviour of polyethylene single crystals, Polymer, 32, 393, 10.1016/0032-3861(91)90440-T Kurelec, 2001 Rastogi, 2005, Novel route to fatigue-resistant fully sintered ultrahigh molecular weight polyethylene for knee prosthesis, Biomacromolecules, 6, 942, 10.1021/bm0493638 Rastogi, 2003, Disentangled state in polymer melts; a route to ultimate physical and mechanical properties, Macromol. Mater. Eng., 288, 964, 10.1002/mame.200300113 R.A. Phillips, Morphology and melting behavior of nascent ultra-high molecular weight polyethylene, J. Polym. Sci. Part B: Polym. Phys. 36 (3) (1998) 495–517, https://doi.org/10.1002/(SICI)1099-0488(199802)36:3<495::AID-POLB12>3.0.CO;2-B. Talebi, 2010, Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst, Macromolecules, 43, 2780, 10.1021/ma902297b Ronca, 2015, Solvent-free solid-state-processed tapes of ultrahigh-molecular-weight polyethylene: Influence of molar mass and molar mass distribution on the tensile properties, Ind. Eng. Chem. Res., 54, 7373, 10.1021/acs.iecr.5b01469 Pandey, 2011, Heterogeneity in the distribution of entanglement density during polymerization in disentangled ultrahigh molecular weight polyethylene, Macromolecules, 44, 4952, 10.1021/ma2003689 Romano, 2015, A hemi-metallocene chromium catalyst with trimethylaluminum-free methylaluminoxane for the synthesis of disentangled ultra-high molecular weight polyethylene, Macromol. Rapid Commun., 36, 327, 10.1002/marc.201400514 Spronck, 2018, Synthesis of disentangled ultra-high molecular weight polyethylene using vanadium(V)-based catalysts, Z. Anorg. Allg. Chem., 644, 993, 10.1002/zaac.201800165 Rastogi, 2005, Heterogeneity in polymer melts from melting of polymer crystals, Nat. Mater., 4, 635, 10.1038/nmat1437 Ivanchev, 2016, Optimization of the conditions of ethylene polymerization into reactor powders of ultra-high-molecular-weight polyethylene suitable for solid-phase formation into oriented ultra-high-strength and ultra-high-modulus film yarns, Dokl. Phys. Chem., 468, 89, 10.1134/S0012501616060026 Tuskaev, 2018, Novel titanium (IV) complexes with 1,2-diolate ligands: Synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production, J. Organomet. Chem., 877, 85, 10.1016/j.jorganchem.2018.09.014 Tuskaev, 2019, Binuclear and hexanuclear Ti(IV) complexes supported by [OOOO]4–-type ligand for preparing disentangled UHMWPE, Chin. J. Polym. Sci., 37, 471, 10.1007/s10118-019-2197-0 Tuskaev, 2019, Novel alkoxo-titanium(IV) complexes with fluorinated 2-hydroxymethylphenol derivatives as catalysts for the formation of ultra-high molecular weight polyethylene nascent reactor powders, Inorg. Chim. Acta, 498, 119159, 10.1016/j.ica.2019.119159 Heidari, 2018, A disentangled state using TiCl4/MgCl2 catalyst: a case study of polyethylene, Iran., Polym. J., 27, 701 V.A. Tuskaev, S.C. Gagieva, D.A. Kurmaev, N.A. Kolosov, E.S. Mikhaylik, E.K. Golubev, A.I. Sizov, S.V. Zubkevich, V.G. Vasil’ev, G.G. Nikiforova, M.I. Buzin, O.A. Serenko, B.M. Bulychev, Titanium(III, IV)-containing catalytic systems for production of ultrahigh molecular weight polyethylene nascent reactor powders, suitable for solventless processing-impact of oxidation states of transition metal, Polymers 10 (2018) 2, https://doi.org/10.3390/polym10010002. O.A. Serenko, M.I. Buzin, V.A. Tuskaev, S.C. Gagieva, N.A. Kolosov, D.A. Kurmaev, T.F. Savel’eva, E.K. Golubev, S.V. Zubkevich, V.G. Vasil’ev, G.G. Nikiforova, A.A. Korlyukov, B.M. Bulychev, A Novel Ziegler–Natta-Type Catalytic System—TiCl4/2,2′-Dimethoxy-1,1′-Binaphthalene/Et3Al2Cl3/Bu2Mg for Production of Ultrahigh Molecular Weight Polyethylene Nascent Reactor Powders, Suitable for Solvent-Free Processing, Polymers 10 (2018) 1281, https://doi.org/10.3390/polym10111281. Gote, 2018, Judicious reduction of supported Ti catalyst enables access to disentangled ultrahigh molecular weight polyethylene, Macromolecules, 51, 4541, 10.1021/acs.macromol.8b00590 Dong, 2020, Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties, Acta Polym. Sin., 51, 117 Chammingkwan, 2021, Less entangled ultrahigh-molecular-weight polyethylene produced by nano-dispersed Ziegler-Natta catalyst, Ind. Eng. Chem. Res., 60, 2818, 10.1021/acs.iecr.0c05432 Chammingkwan, 2018, Nano-dispersed Ziegler-Natta catalysts for 1μm-sized ultra-high molecular weight polyethylene particles, Front. Chem., 6, 524, 10.3389/fchem.2018.00524 Ronca, 2012, Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites, Polymer, 53, 2897, 10.1016/j.polymer.2012.04.051 Fiorentino, 2020, Immobilization of [VCl3(N-2,6-Me2C6H3)] complex on silica supports: Synthesis and catalytic testing for ethylene polymerization, Ind. Eng. Chem. Res., 59, 12710, 10.1021/acs.iecr.0c01908 Rice, 2021, Supported permethylindenyl titanium catalysts for the synthesis of disentangled ultra-high molecular weight polyethylene (disUHMWPE), Chem. Commun., 57, 8600, 10.1039/D1CC03418A Ronca, 2012, Direct route to colloidal UHMWPE by including LLDPE in solution during homogeneous polymerization of ethylene, ACS Macro Lett, 1, 1116, 10.1021/mz300369x Schnitte, 2020, Remote perfluoroalkyl substituents are key to living aqueous ethylene polymerization, Angew. Chem. Int. Edit., 59, 3258, 10.1002/anie.201913117 Schnitte, 2019, Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization, Nat. Commun., 10, 2592, 10.1038/s41467-019-10692-1 Wimmer, 2021, Compartmentalized polymerization in aqueous and organic media to low-entangled ultra high molecular weight polyethylene, Polym. Chem., 12, 3116, 10.1039/D1PY00394A Chen, 2019, Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts, Macromolecules, 52, 7593, 10.1021/acs.macromol.9b00610 Chen, 2021, Synthesis of weakly entangled ultra-high-molecular-weight polyethylene with a fine particle size, Ind. Eng. Chem. Res., 60, 3354, 10.1021/acs.iecr.0c05838 Alt, 2001, Amido functionalized ansa half-sandwich dichloride complexes of titanium, zirconium and hafnium with alkyl and omega-alkenyl substituents as homogeneous and self-immobilizing catalyst precursors for ethylene polymerization, J. Organomet. Chem., 628, 169, 10.1016/S0022-328X(01)00781-1 Alt, 1999, The heterogenization of homogeneous metallocene catalysts for olefin polymerization, J. Chem. Soc.-Dalton Trans., 11, 1703, 10.1039/a808812h Ivancheva, 2007, Features of self-immobilization of titanium phenoxyimine complexes in ethylene polymerization, Dokl. Phys. Chem., 417, 301, 10.1134/S0012501607110036 S.S. Ivanchev, M.Y. Vasil’eva, N.I. Ivancheva, V.K. Badaev, I.I. Oleinik, E.V. Sviridova, G.A. Tolstikov, Polymerization of ethylene with self-immobilizing bis(phenoxyimine) catalytic systems, Polym. Sci. Ser. B 51(7) (2009) 276–282, https://doi.org/10.1134/S1560090409070100. Ivancheva, 2011, Specific features of ethylene polymerization on self-immobilizing catalytic systems based on titanium bis(phenoxy imine) complexes, Russ. J. Appl. Chem., 84, 118, 10.1134/S1070427211010204 Ivancheva, 2012, Multicentered self-immobilized ethylene polymerization catalysts based on functionalized titanium halide salicylaldiminate complexes for the synthesis of ultra-high-molecular-weight polyethylene, Russ. J. Appl. Chem., 85, 1404, 10.1134/S1070427212090170 Oleynik, 2020, Highly active titanium(IV) dichloride FI catalysts bearing a diallylamino group for the synthesis of disentangled UHMWPE, Polym. Advan. Technol., 31, 1921, 10.1002/pat.4917 Ivanchev, 2018, Morphology, nanostructure, and processability of reactor powders of ultrahigh-molecular-weight polyethylene produced on self-immobilizing catalytic systems, Dokl. Chem., 478, 16, 10.1134/S0012500818010032 Ivancheva, 2012, Self-immobilized catalysts for ethylene polymerization based on various phenoxyimine titanium halide complexes, Russ. Chem. Bull., 61, 836, 10.1007/s11172-012-0116-4 Wang, 2014, Ethylene polymerization with novel phenoxy-imine catalysts bearing 4-vinylphenyl group, Chin. J. Polym. Sci., 32, 854, 10.1007/s10118-014-1470-5 Wang, 2014, Synthesis and characterization of titanium(IV) complexes bearing end functionalized biphenyl: Efficient catalysts for synthesizing high molecular weight polyethylene, Inorg. Chem. Commun., 41, 68, 10.1016/j.inoche.2014.01.005 Wang, 2015, Pt catalyzed hydrosilylation of fluorinated phenoxy-imine ligands with hydrosilanes, Phosphorus Sulfur Silicon Relat, Elem, 190, 411 Wang, 2016, UHMWPE with short-chain branches synthesized by alkenyl substituted phenoxy-imine catalysts in ethylene polymerization, J. Polym. Sci., Part A: Polym. Chem., 54, 3808, 10.1002/pola.28265 Wang, 2020, Functionalized phenoxy-imine catalyst for synthesizing highly crystalline nascent UHMWPEs. 1. Molecular weight characteristics and polymer morphologies, Mater. Today Commun., 25, 101267, 10.1016/j.mtcomm.2020.101267 Rastogi, 2011, Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route, Macromolecules, 44, 5558, 10.1021/ma200667m Pandey, 2013 Huang, 2017, Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene, Chem. Eng. J., 315, 132, 10.1016/j.cej.2016.12.133 Lippits, 2006, Melting kinetics in polymers, Phys. Rev. Lett., 96, 218303, 10.1103/PhysRevLett.96.218303 Chaudhuri, 2019, The effect of processing conditions on the rheological properties of blends of ultra high molecular weight polyethylene with high-density polyethylene, Polym. Eng. Sci., 59, 821, 10.1002/pen.25016 Saha, 2021, Photochromic films prepared by solid state processing of disentangled ultrahigh molecular weight polyethylene and photochromic dyes composites, J. Appl. Polym. Sci., 138, 50188, 10.1002/app.50188 Rastogi, 2017 Ronca, 2017, Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films, Polymer, 123, 203, 10.1016/j.polymer.2017.07.027 Sarma, 2013 A.B. Mathur, S.V. Kadam, S.S.R. Gandham, U.S. Satpathy, K.R. Sarma, N.F. Patel, G.M. Mehta, Y.M. Amin, A.K.P. Shah, V.K. Patel, R.V. Jasa, D.K. Shukla, A.I. Parekh, Process for preparing thermally conductive oriented UHMWPE products and products obtained therefrom, WO2015128843, Reliance Industries LTD, 2015. Robbins, 2019, Ballistic thermal phonons traversing nanocrystalline domains in oriented polyethylene, Proc. Natl. Acad. Sci., 116, 17163, 10.1073/pnas.1905492116 Kim, 2022, Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals, Nat. Commun., 13, 2452, 10.1038/s41467-022-29904-2 Christakopoulos, 2021, Tying the Knot”: Enhanced recycling through ultrafast entangling across ultrahigh molecular weight polyethylene interfaces, Macromolecules, 54, 9452, 10.1021/acs.macromol.1c01427 S. Rastogi, D.R. Lippits, G.W.H. Höhne, B. Mezari, P.C.M.M. Magusin, The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics, J. Phys.: Condens. Matter 19 (20) (2007) 205122, https://doi.org/10.1088/0953-8984/19/20/205122. Yang, 2017, Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends, J. Appl. Polym. Sci., 134, 44728, 10.1002/app.44728 Tao, 2021, Exploring the entangled state and molecular weight of UHMWPE on the microstructure and mechanical properties of HDPE/UHMWPE blends, J. Appl. Polym. Sci., 138, 50741, 10.1002/app.50741 Zhang, 2022, Morphology evolution and mechanical property enhancement of linear low-density polyethylene by adding disentangled ultrahigh molecular weight polyethylene, Polym. Advan. Technol., 33, 1047, 10.1002/pat.5577 S. Ronca, G. Forte, L. Mascia, S. Rastogi, High toughness carbon cloth composites for low temperature applications, in: A. Damore, D. Acierno, L. Grassia (Eds.), Viii international conference on times of polymers and composites: from aerospace to nanotechnology, 2016. Zhang, 2006, Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene, Macromolecules, 39, 658, 10.1021/ma051031n Spitalsky, 2010, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 35, 357, 10.1016/j.progpolymsci.2009.09.003 Liu, 2015, Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide, Macromolecules, 48, 131, 10.1021/ma501729y Martin-Fabiani, 2021, Chain dynamics of ultrahigh molecular weight polyethylene composites with graphene oxide nanosheets, ACS Macro Lett, 10, 460, 10.1021/acsmacrolett.1c00007 Kim, 2010, Macromolecules, 43, 6515, 10.1021/ma100572e A.P. de Weijer, H. van de Hee, M.W.M.G. Peters, S. Rastogi, B. Wang, Polyethylene film with high tensile strength and high tensile energy to break, WO2009007045, Teijin Aramid BV, 2009. S. Rastogi, S. Ronca, G. Forte, H.J. Tjaden, High molecular weight polyethylene, WO2012072780, Teijin Aramid BV, 2012. A.B. Mathur, S.S.R. Gandham, U.S. Satpathy, K.R. Sarma, Y.P. Patil, N.F. Patel, G.M. Mehta, R.V. Jasra, High strength polyethylene products and a process for preparation thereof, WO2014192025, Reliance Industries LTD, 2014. J. Eem van der, J. Bos, A.P. de Weijer, S. Rastogi, G. Elderman, Polyethylene film and method for the manufacture thereof, WO 2010079174, Teijin Aramid BV, 2012. S. Rastogi, M. Journee, Hollow articles made of UHMWPE tapes, WO2015022234, Teijin Aramid BV, 2015. Bajya, 2023, Exploration of disentangled UHMWPE tape as a soft body armour material, Mater. Chem. Phys., 295, 127162, 10.1016/j.matchemphys.2022.127162 Drakopoulos, 2020, Nanocomposites of Au/disentangled UHMWPE: A combined optical and structural study, Molecules, 25, 3225, 10.3390/molecules25143225 Drakopoulos, 2021, Gold/ultra-high molecular weight polyethylene nanocomposites for electrical energy storage: Enhanced recovery efficiency upon uniaxial deformation, J. Appl. Polym. Sci., 138, 51232, 10.1002/app.51232 D.K. Shukla, A. Dey, A. Singh, S.N. Tripathi, S. Bonda, S. Saha, P.K. Iyer, V.K. Srivastava, R.V. Jasra, Disentangled ultrahigh molecular weight polyethylene thin film as a transparent substrate for flexible flat panel display, J. Appl. Polym. Sci. 139(39) (2022) e52932, https://doi.org/10.1002/app.52932. Fang, 2011, Temperature window effect and its application in extrusion of ultrahigh molecular weight polyethylene, eXPRESS Polym. Lett., 5, 674, 10.3144/expresspolymlett.2011.66 S.M. Kurtz, From ethylene gas to UHMWPE component: The process of producing orthopedic implants, in: S.M. Kurtz (Ed.), UHMWPE biomaterials handbook, Third ed., William Andrew Publishing, Oxford, 2016, pp. 7-20.