Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics
Tài liệu tham khảo
Elad, 1993, Analysis of air flow patterns in the human nose, Med. Biol. Eng. Comput., 31, 585, 10.1007/BF02441806
Zubair, 2010, Airflow inside the nasal cavity: visualization using computational fluid dynamics, Asian Biomed., 4, 657, 10.2478/abm-2010-0085
Wen, 2008, Numerical simulations for detailed airflow dynamics in a human nasal cavity, Respir Physiol. Neurobiol., 161, 125, 10.1016/j.resp.2008.01.012
Inthavong, 2019, Geometry and airflow dynamics analysis in the nasal cavity during inhalation, Clin. Biomech., 66, 97, 10.1016/j.clinbiomech.2017.10.006
Dong, 2018, Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery, Int. J. Pharm., 543, 83, 10.1016/j.ijpharm.2018.03.046
Tavernini, 2018, Deposition of micrometer-sized aerosol particles in neonatal nasal airway replicas, Aerosol Sci. Technol., 52, 407, 10.1080/02786826.2017.1413489
Zuber, 2012, Computational fluid dynamics study of middle turbinectomy, 338
Lim, 2021, Nasal airflow of patient with septal deviation and allergy rhinitis, Vis. Comput. Ind. Biomed. Art, 4, 14, 10.1186/s42492-021-00080-2
Zuber, 2020, Investigation of coronavirus deposition in realistic human nasal cavity and impact of social distancing to contain COVID-19: a computational fluid dynamic approach, Comput. Model. Eng. Sci., 125, 1185
Xi, 2012, Breathing resistance and ultrafine particle deposition in nasal–laryngeal airways of a newborn, an infant, a child, and an adult, Ann. Biomed. Eng., 40, 2579, 10.1007/s10439-012-0603-7
Moreddu, 2020, Numerical simulation of nasal airflows and thermal air modification in newborns, Med. Biol. Eng. Comput., 58, 307, 10.1007/s11517-019-02092-w
Lee, 2018, Effect of age on healthy human nasal airflow: a computational analysis, Int. J. Eng. Res. Technol., 11, 1231
Ghoneima, 2015, Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: a case report, Prog. Orthod., 16, 10, 10.1186/s40510-015-0085-x
Persak, 2011, Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics, J. Appl. Physiol., 111, 1819, 10.1152/japplphysiol.01230.2010
Kim, 2014, Hood nebulization: effects of head direction and breathing mode on particle inhalability and deposition in a 7-month-old infant model, J. Aerosol Med. Pulm. Drug Deliv., 27, 209, 10.1089/jamp.2013.1051
Gunatilaka, 2020, Increased work of breathing due to tracheomalacia in neonates, Ann. Am. Thorac. Soc., 17, 1247, 10.1513/AnnalsATS.202002-162OC
Keyhani, 1995, Numerical simulation of airflow in the human nasal cavity, J. Biomech. Eng., 117, 429, 10.1115/1.2794204
Doorly, 2008, Mechanics of airflow in the human nasal airways, Respir. Physiol. Neurobiol., 163, 100, 10.1016/j.resp.2008.07.027
Croce, 2006, In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry, Ann. Biomed. Eng., 34, 997, 10.1007/s10439-006-9094-8
Bailie, 2006, An overview of numerical modelling of nasal airflow, Rhinology, 44, 53
Cherobin, 2018, Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold, PLoS ONE, 13, 10.1371/journal.pone.0207178
Zamankhan, 2006, Airflow and deposition of nano-particles in a human nasal cavity, Aerosol Sci. Technol., 40, 463, 10.1080/02786820600660903
Deng, 2018, Particle deposition in tracheobronchial airways of an infant, child and adult, Sci. Total Environ., 612, 339, 10.1016/j.scitotenv.2017.08.240
Celik, 2008, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng., 130
Richardson, 1911, IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character, 210, 307
Hofmann, 1982, Mathematical model for the postnatal growth of the human lung, Respir. Physiol., 49, 115, 10.1016/0034-5687(82)90106-2
Riazuddin, 2011, Numerical study of inspiratory and expiratory flow in a human nasal cavity, J. Med. Biol. Eng., 31, 201, 10.5405/jmbe.781
Zubair, 2015, Characteristic airflow patterns during inspiration and expiration: experimental and numerical investigation, J. Med. Biol. Eng., 35, 387, 10.1007/s40846-015-0037-4
Subramaniam, 1998, Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx, Inhal. Toxicol., 10, 91, 10.1080/089583798197772
Cheng, 1996, Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry, Aerosol Sci. Technol., 25, 274, 10.1080/02786829608965396
Garcia, 2007, Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity, J. Appl. Physiol., 103, 1082, 10.1152/japplphysiol.01118.2006
Patel, 2018, Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics, Int. J. Pediatr. Otorhinolaryngol., 109, 180, 10.1016/j.ijporl.2018.04.002
Ohki, 1991, Dimensions and resistances of the human nose: racial differences, Laryngoscope, 101, 276, 10.1288/00005537-199103000-00009
Weinhold, 2004, Numerical simulation of airflow in the human nose, Eur. Arch. Otorhinolaryngol., 261, 452, 10.1007/s00405-003-0675-y
Zubair, 2013, Hybrid Mesh for nasal airflow studies, Comput. Math. Methods Med., 2013, 1, 10.1155/2013/727362
Bass, 2019, High-efficiency nose-to-lung aerosol delivery in an infant: development of a validated computational fluid dynamics method, J. Aerosol Med. Pulm. Drug Deliv., 32, 132, 10.1089/jamp.2018.1490
Shang, 2021, Prediction of nasal spray drug absorption influenced by mucociliary clearance, PLoS ONE, 16, 10.1371/journal.pone.0246007
Brüning, 2020, Characterization of the airflow within an average geometry of the healthy human nasal cavity, Sci. Rep., 10, 3755, 10.1038/s41598-020-60755-3
Hey, 1982, Nasal conductance and effective airway diameter, J. Physiol., 330, 429, 10.1113/jphysiol.1982.sp014349
Rodenstein, 1985, Infants are not obligatory nasal breathers, Am. Rev. Respir. Dis., 131, 343
Stocks, 1978, Nasal resistance during infancy, Respir. Physiol., 34, 233, 10.1016/0034-5687(78)90031-2
Zhao, 2014, What is normal nasal airflow? A computational study of 22 healthy adults: normal human nasal airflow, Int. Forum Allergy Rhinol., 4, 435, 10.1002/alr.21319
Keustermans, 2020, The effect of nasal shape on the thermal conditioning of inhaled air: using clinical tomographic data to build a large-scale statistical shape model, Comput. Biol. Med., 117, 10.1016/j.compbiomed.2020.103600
Pless, 2004, Numerical simulation of air temperature and airflow patterns in the human nose during expiration, Clin. Otolaryngol. Allied Sci., 29, 642, 10.1111/j.1365-2273.2004.00862.x
Naftali, 2005, The air-conditioning capacity of the human nose, Ann. Biomed. Eng., 33, 545, 10.1007/s10439-005-2513-4