Nanowire dye-sensitized solar cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).
Wang, P. et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitzer and polymer gel electrolyte. Nature Mater. 2, 402–407 (2003).
Rensmo, H. et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101, 2598–2601 (1997).
Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M. & Perera, V. P. S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 15–16 (1999).
Keis, K., Magnusson, E., Lindström, H., Lindquist, S.-E. & Hagfeldt, A. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51–58 (2002).
Krüger, J., Plass, R., Grätzel, M., Cameron, P. J. & Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107, 7536–7539 (2003).
O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
Fisher, A. C., Peter, L. M., Ponomarev, E. A., Walker, A. B. & Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000).
Oekermann, T., Zhang, D., Yoshida, T. & Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108, 2227–2235 (2004).
Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 15374–15380 (1999).
van de Lagemaat, J. & Frank, A. J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105, 11194–11205 (2001).
Kopidakis, N., Schiff, E. A., Park, N.-G., van de Lagemaat, J. & Frank, A. J. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2 . J. Phys. Chem. B. 104, 3930–3936 (2000).
Benkstein, K. D., Kopidakis, N., van de Lagemaat, J. & Frank, A. J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B. 107, 7759–7767 (2003).
Kopidakis, N., Benkstein, K. D., van de Lagemaat, J. & Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307–11315 (2003).
Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Schell, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).
Wagner, P. & Helbig, R. Hall effect and anisotropy of the mobility of the electrons in zinc oxide. J. Phys. Chem. Sol. 35, 327–335 (1974).
Nakade, S. et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperatures on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B 106, 10004–10010 (2002).
Frank, A. J., Kopidakis, N. & van de Lagemaat, J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248, 1165–1179 (2004).
Renouard, T. et al. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorg. Chem. 41, 367–378 (2002).
Hara, K. et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 27, 783–785 (2003).
Kron, G., Egerter, T., Werner, J. H. & Rau, U. Electronic transport in dye-sensitized nanoporous TiO2 solar cells—comparison of electrolyte and solid-state devices. J. Phys. Chem. B 107, 3556–3564 (2003).
Greene, L. et al. Low-temperature wafer scale production of ZnO nanowire arrays. Angew. Chem. Int. Edn Engl. 42, 3031–3034 (2003).
Noack, V., Weller, H. & Eychmüller, A. Electron transport in particulate ZnO electrodes: a simple approach. J. Phys. Chem. B. 106, 8514–8523 (2002).
Anderson, N. A., Ai, X. & Lian, T. Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films. J. Phys. Chem. B 107, 14414–14421 (2003).
Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).