Nanotextures of composites based on the interaction between hydroxyapatite and cellulose Gluconacetobacter xylinus

Д. А. Романов1, А. К. Хрипунов2, Yu. G. Baklagina2, А. В. Северин3, N. V. Lukasheva2, Dmitry Tolmachev2, В. К. Лаврентьев2, А. С. Ткаченко4, Н. А. Архарова4, V. V. Klechkovskaya5
1Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
3Moscow State University, Moscow, Russia
4St. Petersburg State University, St. Petersburg, Russia
5Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Puppi, D., Chiellini, F., Piras, A.M., and Chiellini, E., Polymeric materials for bone and cartilage repair, Prog. Polym. Sci., 2010, vol. 35, pp. 403–440.

Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–31.

Wan, Y.Z., Hong, L., Jia, S.R., Huang, Y., Zhu, Y., Wang, Y.L., and Jiang, H.J., Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites, Compos. Sci. Technol., 2006, vol. 66, pp. 1825–1832.

Khripunov, A.K., Baklagina, Yu.G., Sinyaev, V.A., Shustikova, E.S., Paramonov, B.A., Romanov, D.P., Smyslov, R.Yu., and Tkachenko, A.A., Investigation of nanocomposites based on hydrated calcium phosphates and cellulose Acetobacter xylinum, Fiz. Khim. Stekla, 2008, vol. 34, no. 2, pp. 248–258.

Khripunov, A.K., Baklagina, Yu.G., Sinjaev, V.A., Shustikova, E.S., Paramonov, B.A., Romanov, D.P., Smyslov, R.Yu., and Tkachenko, A.A., Investigation of nanocomposites based on hydrated calcium phosphates and cellulose Acetobacter xylinum, Glass Phys. Chem., 2008, vol. 32, no. 4, pp. 192–200.

Romanov, D.P., Baklagina, Yu.G., Gubanova, G.N., Ugolkov, V.L., Lavrent’ev, V.K., Tkachenko, A.A., Sinyaev, V.A., Sukhanova, T.E., and Khripunov, A.K., Formation of organicinorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications, Fiz. Khim. Stekla, 2010, vol. 36, no. 4, pp. 604–615.

Romanov, D.P., Baklagina, Yu.G., Gubanova, G.N., Ugolkov, V.L., Lavrentyev, V.K., Tkachenko, A.A., Sinjaev, V.A., Sukhanova, T.E., and Khripunov, A.K., Formation of organicinorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 484–493.

Baklagina, Yu.G., Lukasheva, N.V., Khripunov, A.K., Klechkovskaya, V.V., Arkharova, N.A., Romanov, D.P., and Tolmachev, D.A., Interactions between nanometer-sized crystalline components of the composite based on Acetobacter xylinum cellulose and calcium phosphates, Vysokomol. Soedin., Ser. A, 2010, vol. 52, no. 4, pp. 615–627.

Baklagina, Yu.G., Lukasheva, N.V., Khripunov, A.K., Klechkovskaja, V.V., Archarova, N.A., Romanov, D.P., and Tolmachev, D.A., Interactions between nanometer-sized crystalline components of the composite based on Acetobacter xylinum cellulose and calcium phosphates, Polym. Sci. Ser. A, 2010, vol. 52, no. 4, pp. 419–429.

Barinov, C.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioceramics Based on Calcium Phosphates), Moscow: Nauka, 2005.

Wan, A.A., Khor, E., and Hastings, G.W., Hydroxyapatite modified chitin as potential hard tissue substitute material, J. Biomed. Mater. Res., 1997, vol. 38, pp. 235–241.

Hu, Q., Li, B., Wang, M., and Shen, J., Preparation of bioactive chitosanhydroxyapatite nanocomposite rods via in situ hybritisation: A potential material as internal fixation of bone fracture, Biomaterials, 2004, vol. 25, pp. 779–785.

Chang, M.C., Ko, C.C., and Douglas, W.H., Preparation of hydroxyapatite-gelatine nanocomposites, Biomaterials, 2003, vol. 24, pp. 2853–2862.

Rosseeva, E.V., Buder, J., Simon, P., Schwarz, U., Frank-Kamenetskaya, O.V., and Kniep, R., Synthesis, characterization, and morphogenesis of carbonated fluorapatite-gelatine nanocomposites: A complex biomimetic approach toward the mineralization of hard tissues, Chem. Mater., 2008, vol. 20, no. 19, pp. 6003–6013.

Rosseeva, E.V., Zimon, P., Shvarts, U., Buder, Ya., Frank-Kamenetskaya, O.V., and Knip, R., Analogues of biological hard tissues: 1. Synthesis and characterization of the composites. Isomorphic substitution in the structure of the carbonate-containing apatite—(CaF), Zap. Ross. Mineral. O-va, 2009, part CXXXVIII (88), no. 4, pp. 53–71.

Mucalo, M.R., Yokogawa, Y., Toriyama, M., Suzuki, T., Kawamoto, Y., Nagata, F., and Nishizawa, K., Growth of calcium phosphate on surface-modified cotton, J. Mater. Sci.: Mater. Med., 1995, vol. 6, pp. 597–605.

Wang, L., Nemoto, R., and Senna, M., Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite, J. Mater. Sci.: Mater. Med., 2004, vol. 5, pp. 261–265.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Cellulose nanomaterials review: Structure, properties, and nanocomposites, Chem. Soc. Rev., 2011, vol. 40, no. 7, pp. 3941–3994.

Klemm, D., Kramer, F., Moritz, S., Lindström, X., Ankerfors, M., Gray, D., and Dorris, A., Nanocelluloses: A new family of nature-based materials, Angew. Chem., Int. Ed. Engl., 2011, vol. 50, no. 24, pp. 5438–5466.

Torres, F.G., Commeaux, S., and Troncoso, O.P., Biocompatibility of bacterial cellulose-based biomaterials, J. Funct. Biomater., 2012, vol. 3, no. 4, pp. 864–878.

Musskaya, O.N., Kulak, A.I., Krut’ko, V.K., Lesnikovich, L.A., and Ulasevich, S.A., Nanocomposite biomaterials based on hydroxyapatite xerogel, Fiz. Khim. Stekla, 2011, vol. 37, no. 5, pp. 702–713.

Musskaya, O.N., Kulak, A.I., Krut’ko, V.K., Lesnikovich, L.A., and Ulasevich, S.A., Nanocomposite biomaterials based on hydroxyapatite xerogel, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 525–532.

Khripunov, A.K. and Tkachenko, A.A., Nutrient composition of the culture medium of Acetobacter xylinum for the preparation of bacterial cellulose, RF Patent 2141530 (1999); RF Patent 2189394 (2002).

Khripunov, A.K., Sinyaev, V.A., Baklagina, Yu.G., Smyslov, R.Yu., Tkachenko, A.A., Paramonov, B.A., Sazanov, Yu.N., and Shustikova, E.S., Composites based on cellulose and amorphous calcium phosphates—perspective materials for medicine, in Tezisy dokladov Vserosiiskogo soveshchaniya “Biokeramika v meditsine,” Moskva, 21–22 noyabrya, 2006 (Abstracts of Papers of the All-Russian Workshop “Bioceramics in Medicine,” Moscow, Russia, November 21–22, 2006), Moscow, 2006, pp. 55–56.

Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., and Risberg, B., In vivo biocompatibility of bacterial cellulose, J. Biomed. Mater. Res., 2006, vol. 76 A, no. 2, pp. 431–438.

Buyanov, A.L., Khripunov, A.K., Gofman, I.V., Revel’skaya, L.G., Tkachenko, A.A., and Paramonov, B.A., Artificial cartilage based on cellulose Acetobacter xylinum and synthetic polymers: Functional properties and prospects of applications, in Tezisy dokladov i Mezhdunarodnoi konferentsii “Sovremennye polimernye materialy v meditsine i meditsinskoi tekhnike” (Abstracts of Papers of the First International Conference “Modern Polymer Materials in Medicine and Medical Engineering”), St. Petersburg, 2005, pp. 92–96.

Baklagina, Yu.G., Khripunov, A.K., Tkachenko, A.A., Kopeikin, V.V., Matveeva, N.A., Lavrent’ev, V.K., Nilova, V.K., Sukhanova, T.E., Smyslov, R.Yu., Zanaveskina, I.S., Klechkovskaya, V.V., and Feigin, L.A., Sorption properties of gel films of bacterial cellulose, Russ. J. Appl. Chem., 2005, vol. 78, no. 7, pp. 1176–1181.

Baklagina, Yu.G., Khripunov, A.K., Tkachenko, A.A., Suvorova, E.I., Klechkovskaya, V.V., Borovikova, L.N., Smyslov, R.Yu., Nilova, V.K., Nazarkina, Ya.I., Lavrent’ev, V.K., Valueva, S.V., Kipper, A.I., and Kopeikin, V.V., Interaction of Se0 nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum, Crystallogr. Rep., 2006, vol. 51, no. 4, pp. 619–626.

Melikhov, I.V., Komarov, V.F., Bozhevol’nov, V.E., and Severin, A.V., Two-dimensional crystalline hydroxyapatite, Dokl. Phys. Chem., 2000, vol. 373, nos. 1–3, pp. 125–128.

Suvorova, E.I., Klechkovskaya, V.V., Komarov, V.F., Severin, A.V., Melikhov, I.V., and Bufa, F.F., Electron microscopy of biomaterials based on hydroxyapatite, Crystallogr. Rep., 2006, vol. 51, no. 5, pp. 881–887.

Gregg, S. and Sink, K., Adsorption, Surface Area, and Porosity, New York: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.

Powder Diffraction File PDF-2, 9-432, 18-303, 74-566, Newtown Square, Pennsylvania, United States: International Center for Diffraction Data, 2002.

Gardner, K.H. and Blackwell, J., The structure of native cellulose, Biopolymers, 1974, vol. 13, pp. 1975–2001.

Elliot, J.C., Mackie, P.E., and Young, R.A., Monoclinic hydroxyapatite, Science (Washington), 1973, vol. 180, no. 4090, pp. 1055–1057.

Homans, S.W., A molecular mechanical force field for the conformational analysis of oligosaccharides: Comparison of theoretical and crystal structures of Manα1-3Manβ1-4Gl1cNAc, Biochemistry, 1990, vol. 29, pp. 9110–9118.

Bhowmik, R., Katti, K.S., and Katti, D.R., Molecular modeling of polyacrylic acidhydroxyapatite interface, Polymer, 2007, vol. 48, pp. 664–674.

Freeman, C.L., Harding, J.H., Cooke, D.J., Elliott, J.A., Lardge, J.S., and Duffy, D.M., New force-fields for modeling biomineralization processes, J. Phys. Chem., 2007, vol. 111, no. 32, pp. 11943–11950.