Nanotechnology-based sunscreens—a review

Materials Today Chemistry - Tập 23 - Trang 100709 - 2022
A.C. Santos1,2, J. Marto3, R. Chá-Chá1, A.M. Martins3, M. Pereira-Silva1,2, H.M. Ribeiro3, F. Veiga1,2
1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
2REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
3Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal

Tài liệu tham khảo

Hoel, 2016, The risks and benefits of sun exposure 2016, Dermatoendocrinol, 8, e1248325, 10.1080/19381980.2016.1248325 Juzeniene, 2012, Beneficial effects of UV radiation other than via vitamin D production, Dermatoendocrinol, 4, 109, 10.4161/derm.20013 Moan, 2012, Vitamin D, sun, sunbeds and health, Publ. Health Nutr., 15, 711, 10.1017/S1368980011002801 Nikolic, 2011, Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters, Int. J. Pharm., 414, 276, 10.1016/j.ijpharm.2011.05.010 Dunaway, 2018, Natural antioxidants: multiple mechanisms to protect skin from solar radiation, Front. Pharmacol., 9, 392, 10.3389/fphar.2018.00392 Sambandan, 2011, Sunscreens: an overview and update, J. Am. Acad. Dermatol., 64, 748, 10.1016/j.jaad.2010.01.005 Yeager, 2019, What's new in photoprotection: a review of new concepts and controversies, Dermatol. Clin., 37, 149, 10.1016/j.det.2018.11.003 Jose, 2019, Role of solid lipid nanoparticles as photoprotective agents in cosmetics, J. Cosmet. Dermatol., 18, 315, 10.1111/jocd.12504 Saewan, 2015, Natural products as photoprotection, J. Cosmet. Dermatol., 14, 47, 10.1111/jocd.12123 Green, 2011, Reduced melanoma after regular sunscreen use: randomized trial follow-up, J. Clin. Oncol., 29, 257, 10.1200/JCO.2010.28.7078 Krutmann, 2017, The skin aging exposome, J. Dermatol. Sci., 85, 152, 10.1016/j.jdermsci.2016.09.015 Serpone, 2007, Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta., 360, 794, 10.1016/j.ica.2005.12.057 Young, 2017, Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection, J. Am. Acad. Dermatol., 76, S100, 10.1016/j.jaad.2016.09.038 Lim, 2017, Current challenges in photoprotection, J. Am. Acad. Dermatol., 76, S91, 10.1016/j.jaad.2016.09.040 Mandal, 2015, Photon harvesting in sunscreen-based functional nanoparticles, ChemPhysChem, 16, 3618, 10.1002/cphc.201500780 Deng, 2015, A sunblock based on bioadhesive nanoparticles, Nat. Mater., 14, 1278, 10.1038/nmat4422 Jansen, 2013, Photoprotection: part II. Sunscreen: development, efficacy, and controversies, J. Am. Acad. Dermatol., 69, 867 e1, 10.1016/j.jaad.2013.08.022 Haywood, 2003, Sunscreens inadequately protect against ultraviolet-A-induced free radicals in skin: implications for skin aging and melanoma?, J. Invest. Dermatol., 121, 862, 10.1046/j.1523-1747.2003.12498.x Liebel, 2012, Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes, J. Invest. Dermatol., 132, 1901, 10.1038/jid.2011.476 Zaccariello, 2017, formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles: an efficient self-sealing nanosystem for UV filtering in cosmetic formulation, ACS Appl. Mater. Interfaces, 9, 1913, 10.1021/acsami.6b13252 Mancuso, 2017, Sunscreens: an update, Am. J. Clin. Dermatol., 18, 643, 10.1007/s40257-017-0290-0 Bernstein, 2020, Beyond sun protection factor: an approach to environmental protection with novel mineral coatings in a vehicle containing a blend of skincare ingredients, J. Cosmet. Dermatol., 19, 407, 10.1111/jocd.13007 Afonso, 2014, Photodegradation of avobenzone: stabilization effect of antioxidants, J. Photochem. Photobiol., B, 140, 36, 10.1016/j.jphotobiol.2014.07.004 Santos, 2019, Nanotechnology for the development of new cosmetic formulations, Expet Opin. Drug Deliv., 16, 313, 10.1080/17425247.2019.1585426 Paiva-Santos, 2021, Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications, Int. J. Pharm., 597, 120311, 10.1016/j.ijpharm.2021.120311 Doktorovova, 2009, Novel carriers for sunscreen formulations, Focus Sun Care Suppl. Household Pers. Care Today, 3, 18 Sadrieh, 2010, Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles, Toxicol. Sci., 115, 156, 10.1093/toxsci/kfq041 Shetty, 2015, Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity, Int. J. Nanomed., 10, 6477 Damiani, 2019, Nanocarriers and microcarriers for enhancing the UV protection of sunscreens: an overview, J. Pharm. Sci., 108, 3769, 10.1016/j.xphs.2019.09.009 Joshi, 2018, Sunscreen creams containing naringenin nanoparticles: formulation development and in vitro and in vivo evaluations, Photodermatol. Photoimmunol. Photomed., 34, 69, 10.1111/phpp.12335 Netto, 2018, Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin, J. Cosmet. Dermatol., 17, 1073, 10.1111/jocd.12470 Andreo-Filho, 2018, Development and evaluation of lipid nanoparticles containing natural botanical oil for sun protection: characterization and in vitro and in vivo human skin permeation and toxicity, Skin Pharmacol. Physiol., 31, 1, 10.1159/000481691 Avadhani, 2017, Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage, Drug Deliv., 24, 61, 10.1080/10717544.2016.1228718 Santos, 2019, Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations, Int. J. Pharm., 572, 118787, 10.1016/j.ijpharm.2019.118787 Katz, 2015, Nanotechnology in cosmetics, Food Chem. Toxicol., 85, 127, 10.1016/j.fct.2015.06.020 Nohynek, 2012, Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?, Arch. Toxicol., 86, 1063, 10.1007/s00204-012-0831-5 Papakostas, 2011, Nanoparticles in dermatology, Arch. Dermatol. Res., 303, 533, 10.1007/s00403-011-1163-7 Silva, 2013, Nanoemulsions containing octyl methoxycinnamate and solid particles of TiO(2): preparation, characterization and in vitro evaluation of the solar protection factor, Drug Dev. Ind. Pharm., 39, 1378, 10.3109/03639045.2012.718787 Wu, 2013, The application of nanoemulsion in dermatology: an overview, J. Drug Target., 21, 321, 10.3109/1061186X.2013.765442 Bali, 2010, Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe, Colloids Surf. B Biointerfaces, 76, 410, 10.1016/j.colsurfb.2009.11.021 Tadros, 2004, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci., 108–109, 303, 10.1016/j.cis.2003.10.023 Kabri, 2011, Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3, J. Nanobiotechnol., 9, 41, 10.1186/1477-3155-9-41 Prapaporn, 2012, Anti-ageing microemulsions and nanoemulsions, HPC Today, 2, 42 Wu, 2013, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 42, 3862, 10.1039/c3cs35405a Dasgupta, 2013, Topical delivery of aceclofenac as nanoemulsion comprising excipients having optimum emulsification capabilities: preparation, characterization and in vivo evaluation, Expet Opin. Drug Deliv., 10, 411, 10.1517/17425247.2013.749234 Balestrin, 2016, Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage, J. Photochem. Photobiol., B, 163, 269, 10.1016/j.jphotobiol.2016.08.039 Hanno, 2012, Polyamide nanocapsules and nano-emulsions containing Parsol(R) MCX and Parsol(R) 1789: in vitro release, ex vivo skin penetration and photo-stability studies, Pharm. Res. (N. Y.), 29, 559, 10.1007/s11095-011-0592-5 Cerqueira-Coutinho, 2016, Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach, Nanotechnology, 27, 015101, 10.1088/0957-4484/27/1/015101 Harwansh, 2016, Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress, J. Photochem. Photobiol., B, 160, 318, 10.1016/j.jphotobiol.2016.03.026 Monteiro, 2012, Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: preparations, characterizations and in vitro penetration studies, Int. J. Nanomed., 7, 3045 Mota Ade, 2013, In vivo and in vitro evaluation of octyl methoxycinnamate liposomes, Int. J. Nanomed., 8, 4689 Ascenso, 2015, Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes, Int. J. Nanomed., 10, 5837, 10.2147/IJN.S86186 Laouini, 2012, Preparation, characterization and applications of liposomes: state of the art, J. Coll. Sci. Biotechnol., 1, 147, 10.1166/jcsb.2012.1020 Brewer, 2013, Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration, J. Invest. Dermatol., 133, 1260, 10.1038/jid.2012.461 Elsayed, 2006, Deformable liposomes and ethosomes: mechanism of enhanced skin delivery, Int. J. Pharm., 322, 60, 10.1016/j.ijpharm.2006.05.027 Xu, 2013, CDBA-liposome as an effective sunscreen with longer UV protection and longer shelf life, J. Photochem. Photobiol., B, 129, 78, 10.1016/j.jphotobiol.2013.09.008 Paiva-Santos, 2021, Ethosomes as nanocarriers for the development of skin delivery formulations, Pharmaceut. Res., 38, 947, 10.1007/s11095-021-03053-5 Romero, 2013, Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations, Int. J. Nanomed., 8, 3171, 10.2147/IJN.S33048 Chen, 2013, Skin permeation behavior of elastic liposomes: role of formulation ingredients, Expet Opin. Drug Deliv., 10, 845, 10.1517/17425247.2013.779252 Dragicevic-Curic, 2010, Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability, Int. J. Pharm., 384, 100, 10.1016/j.ijpharm.2009.10.006 Zhu, 2014, Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression, J. Radiat. Res., 55, 1056, 10.1093/jrr/rru047 Prikhnenko, 2015, Polycomponent mesotherapy formulations for the treatment of skin aging and improvement of skin quality, Clin. Cosmet. Invest. Dermatol., 8, 151 Ramos-e-Silva, 2007, Elderly skin and its rejuvenation: products and procedures for the aging skin, J. Cosmet. Dermatol., 6, 40, 10.1111/j.1473-2165.2007.00289.x Yamaguchi, 2009, Comparison of cathepsin L activity in cheek and forearm stratum corneum in young female adults, Skin Res. Technol., 15, 370, 10.1111/j.1600-0846.2009.00373.x Kaur, 2011, Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin, J. Cosmet. Dermatol., 10, 260, 10.1111/j.1473-2165.2011.00586.x Menezes, 2016, Development and characterization of novel 1-(1-Naphthyl)piperazine-loaded lipid vesicles for prevention of UV-induced skin inflammation, Eur. J. Pharm. Biopharm., 104, 101, 10.1016/j.ejpb.2016.04.023 Cevc, 2010, Nanotechnology and the transdermal route: a state of the art review and critical appraisal, J. Contr. Release, 141, 277, 10.1016/j.jconrel.2009.10.016 Touitou, 2000, Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties, J. Contr. Release, 65, 403, 10.1016/S0168-3659(99)00222-9 Maheshwari, 2012, Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment, Saudi Pharmaceut. J., 20, 161, 10.1016/j.jsps.2011.10.001 Jain, 2007, Formulation and evaluation of ethosomes for transdermal delivery of lamivudine, AAPS PharmSciTech, 8, E111, 10.1208/pt0804111 Jain, 2015, Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route, Pharmaceut. Dev. Technol., 20, 473, 10.3109/10837450.2014.882939 Chourasia, 2011, Nanosized ethosomes bearing ketoprofen for improved transdermal delivery, Result Pharma. Sci., 1, 60, 10.1016/j.rinphs.2011.10.002 Touitou, 2008, Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations, Clin. Dermatol., 26, 375, 10.1016/j.clindermatol.2008.01.014 Song, 2012, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation, Colloids Surf. B Biointerfaces, 92, 299, 10.1016/j.colsurfb.2011.12.004 Abdulbaqi, 2016, Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials, Int. J. Nanomed., 11, 2279, 10.2147/IJN.S105016 Garg, 2017, Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment, AAPS PharmSciTech, 18, 58, 10.1208/s12249-016-0489-z Hosny, 2014, Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction, Expet Opin. Drug Deliv., 11, 1015, 10.1517/17425247.2014.912212 Ezzati Nazhad Dolatabadi, 2015, Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance, Drug Dev. Ind. Pharm., 41, 1431, 10.3109/03639045.2014.956111 Severino, 2014, Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines), Eur. J. Med. Chem., 81, 28, 10.1016/j.ejmech.2014.04.084 Faure, 2013, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Sci. Technol. Adv. Mater., 14, 023001, 10.1088/1468-6996/14/2/023001 Becker Peres, 2016, Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique, Colloids Surf. B Biointerfaces, 140, 317, 10.1016/j.colsurfb.2015.12.033 Fangueiro, 2014, Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity, Int. J. Pharm., 461, 64, 10.1016/j.ijpharm.2013.11.025 Fangueiro, 2014, Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation, Colloids Surf. B Biointerfaces, 123, 452, 10.1016/j.colsurfb.2014.09.042 Pardeike, 2009, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170, 10.1016/j.ijpharm.2008.10.003 Berkman, 2012, Solid lipid nanoparticles: a possible vehicle for zinc oxide and octocrylene, Pharmazie, 67, 202 Puglia, 2012, Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals, Expet Opin. Drug Deliv., 9, 429, 10.1517/17425247.2012.666967 Niculae, 2012, Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect, Nanotechnology, 23, 315704, 10.1088/0957-4484/23/31/315704 Kumari, 2010, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces, 75, 1, 10.1016/j.colsurfb.2009.09.001 Perugini, 2002, Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate, Int. J. Pharm., 246, 37, 10.1016/S0378-5173(02)00356-3 Li, 2017, Nanosystem trends in drug delivery using quality-by-design concept, J. Contr. Release, 256, 9, 10.1016/j.jconrel.2017.04.019 Frizzo, 2019, Simultaneous encapsulation of zinc oxide and octocrylene in poly (methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations, Colloid. Surface. Physicochem. Eng. Aspect., 561, 39, 10.1016/j.colsurfa.2018.10.062 Mora-Huertas, 2010, Polymer-based nanocapsules for drug delivery, Int. J. Pharm., 385, 113, 10.1016/j.ijpharm.2009.10.018 Oliveira, 2011, Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications, Soft Matter, 7, 6426, 10.1039/c0sm01302a Severino, 2012, Preparation of gastro-resistant pellets containing chitosan microspheres for improvement of oral didanosine bioavailability, J. Pharm. Anal., 2, 188, 10.1016/j.jpha.2012.02.005 Staff, 2013, Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules, 329 Machado, 2014, Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2, Ind. Crop. Prod., 54, 17, 10.1016/j.indcrop.2014.01.007 Alvarez-Roman, 2004, Enhancement of topical delivery from biodegradable nanoparticles, Pharm. Res. (N. Y.), 21, 1818, 10.1023/B:PHAM.0000045235.86197.ef Dash, 2012, Poly-small je, Ukrainian-caprolactone based formulations for drug delivery and tissue engineering: a review, J. Contr. Release, 158, 15, 10.1016/j.jconrel.2011.09.064 El-Say, 2017, Polymeric nanoparticles: promising platform for drug delivery, Int. J. Pharm., 528, 675, 10.1016/j.ijpharm.2017.06.052 Frank, 2015, Improving drug biological effects by encapsulation into polymeric nanocapsules, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 7, 623, 10.1002/wnan.1334 Jimenez, 2004, Influence of encapsulation on the in vitro percutaneous absorption of octyl methoxycinnamate, Int. J. Pharm., 272, 45, 10.1016/j.ijpharm.2003.11.029 Alvarez-Roman, 2001, Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection, Eur. J. Pharm. Biopharm., 52, 191, 10.1016/S0939-6411(01)00188-6 Bhia, 2021, Naringenin nano-delivery systems and their therapeutic applications, Pharmaceutics, 13, 10.3390/pharmaceutics13020291 Slowing, 2008, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278, 10.1016/j.addr.2008.03.012 Tang, 2012, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504, 10.1002/adma.201104763 Tolbert, 2016, New hybrid organic/inorganic polysilsesquioxane-silica particles as sunscreens, ACS Appl. Mater. Interfaces, 8, 3160, 10.1021/acsami.5b10472 Knezevic, 2018, Mesoporous silica and organosilica nanomaterials as UV-blocking agents, ACS Appl. Mater. Interfaces, 10, 20231, 10.1021/acsami.8b04635 Ambrogi, 2013, Mesoporous silicate MCM-41 as a particulate carrier for octyl methoxycinnamate: sunscreen release and photostability, J. Pharm. Sci., 102, 1468, 10.1002/jps.23478 Müller, 2011, 411 Bansal, 2012, Nanocrystals: current strategies and trends, Int. J. Res. Pharmaceut. Biomed. Sci., 3, 407 Al Shaal, 2011, Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation, Int. J. Pharm., 420, 133, 10.1016/j.ijpharm.2011.08.018 Vidlarova, 2016, Nanocrystals for dermal penetration enhancement - effect of concentration and underlying mechanisms using curcumin as model, Eur. J. Pharm. Biopharm., 104, 216, 10.1016/j.ejpb.2016.05.004 Shegokar, 2010, Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives, Int. J. Pharm., 399, 129, 10.1016/j.ijpharm.2010.07.044 Peterson, 2006 Zhai, 2014, Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy, Int. J. Pharm., 470, 141, 10.1016/j.ijpharm.2014.04.060 Zhang, 2019, Cinnamate-functionalized cellulose nanocrystals as UV-shielding nanofillers in sunscreen and transparent polymer films, Adv. Sustain. Sys., 3, 1800156, 10.1002/adsu.201800156 Haas, 2006 Ainbinder, 2010, Skin photodamage prevention: state of the art and new prospects, 429 Antoniou, 2008, Sunscreens--what's important to know, J. Eur. Acad. Dermatol. Venereol., 22, 1110, 10.1111/j.1468-3083.2007.02580.x Botta, 2011, TiO(2)-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities, Environ. Pollut., 159, 1543, 10.1016/j.envpol.2011.03.003 Shin, 2010, Non-invasive transdermal delivery route using electrostatically interactive biocompatible nanocapsules, Adv. Mater., 22, 739, 10.1002/adma.200902079 Care Care Nagelreiter, 2013, Size analysis of nanoparticles in commercial O/W sunscreens, Int. J. Pharm., 456, 517, 10.1016/j.ijpharm.2013.08.024 Nagelreiter, 2015, Size analysis of nanoparticles extracted from W/O emulsions, Int. J. Pharm., 488, 29, 10.1016/j.ijpharm.2015.04.055 Mu, 2010, Application of nanotechnology in cosmetics, Pharm. Res. (N. Y.), 27, 1746, 10.1007/s11095-010-0139-1 2007 Lademann, 2015, Hair follicles as a target structure for nanoparticles, J. Innov. Opt. Health Sci., 08, 1530004, 10.1142/S1793545815300049 Smijs, 2011, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnol. Sci. Appl., 4, 95, 10.2147/NSA.S19419 Senzui, 2010, Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro, J. Toxicol. Sci., 35, 107, 10.2131/jts.35.107 Crosera, 2015, Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells, Int. J. Environ. Res. Publ. Health, 12, 9282, 10.3390/ijerph120809282 Lin, 2011, Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin, Pharm. Res. (N. Y.), 28, 2920, 10.1007/s11095-011-0515-5 Monteiro-Riviere, 2011, Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study, Toxicol. Sci., 123, 264, 10.1093/toxsci/kfr148 Larese Filon, 2013, Human skin penetration of cobalt nanoparticles through intact and damaged skin, Toxicol. Vitro, 27, 121, 10.1016/j.tiv.2012.09.007 Gulson, 2015, A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies, Arch. Toxicol., 89, 1909, 10.1007/s00204-015-1564-z Shakeel, 2016, Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review, Biol. Trace Elem. Res., 172, 1, 10.1007/s12011-015-0550-x Touloumes, 2020, Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues, NanoImpact, 17, 10.1016/j.impact.2020.100208 Lekki, 2007, On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 260, 174, 10.1016/j.nimb.2007.02.021 Gontier, 2008, Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study, Nanotoxicology, 2, 218, 10.1080/17435390802538508 Schneider, 2009, ToxRTool", a new tool to assess the reliability of toxicological data, Toxicol. Lett., 189, 138, 10.1016/j.toxlet.2009.05.013 Pelclova, 2019, NanoTiO2 sunscreen does not prevent systemic oxidative stress caused by UV radiation and a minor amount of NanoTiO2 is absorbed in humans, Nanomaterials, 9, 10.3390/nano9060888 Filipe, 2009, Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption, Skin Pharmacol. Physiol., 22, 266, 10.1159/000235554 Wu, 2009, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Toxicol. Lett., 191, 1, 10.1016/j.toxlet.2009.05.020 Saquib, 2012, Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells, Toxicol. Vitro, 26, 351, 10.1016/j.tiv.2011.12.011 Gulson, 2010, Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin, Toxicol. Sci., 118, 140, 10.1093/toxsci/kfq243 Szikszai, 2011, Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 269, 2278, 10.1016/j.nimb.2011.02.055 Coelho, 2016, Repetitive application of sunscreen containing titanium dioxide nanoparticles on human skin, JAMA Dermatol., 152, 470, 10.1001/jamadermatol.2015.5944 Naess, 2016, Titanium dioxide nanoparticles in sunscreen penetrate the skin into viable layers of the epidermis: a clinical approach, Photodermatol. Photoimmunol. Photomed., 32, 48, 10.1111/phpp.12217 2014 Tran, 2011, Potential photocarcinogenic effects of nanoparticle sunscreens, Australas. J. Dermatol., 52, 1, 10.1111/j.1440-0960.2010.00677.x Landsiedel, 2010, Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations, Nanotoxicology, 4, 364, 10.3109/17435390.2010.506694 Rajh, 2014, Titanium dioxide in the service of the biomedical revolution, Chem. Rev., 114, 10177, 10.1021/cr500029g Rampaul, 2007, Damaging and protective properties of inorganic components of sunscreens applied to cultured human skin cells, J. Photochem. Photobiol. Chem., 191, 138, 10.1016/j.jphotochem.2007.04.014 Tiano, 2010, Modified TiO(2) particles differentially affect human skin fibroblasts exposed to UVA light, Free Radic. Biol. Med., 49, 408, 10.1016/j.freeradbiomed.2010.04.032 Barker, 2008, The interaction of modern sunscreen formulations with surface coatings, Prog. Org. Coating, 62, 313, 10.1016/j.porgcoat.2008.01.008 2012 Sharma, 2009, DNA damaging potential of zinc oxide nanoparticles in human epidermal cells, Toxicol. Lett., 185, 211, 10.1016/j.toxlet.2009.01.008 Subramaniam, 2019, Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products, Drug Chem. Toxicol., 42, 84, 10.1080/01480545.2018.1491987 Hanigan, 2018, Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens, Water Res., 139, 281, 10.1016/j.watres.2018.03.062 TGA, 2016 EC, 2018 TGA, 2019 Solaiman, 2019, Nano-sunscreens – a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union, Crit. Rev. Toxicol., 49, 122, 10.1080/10408444.2019.1579780 FDA, 2019 FDA, 2018