Nanostructured titanium for biomedical applications: New developments and challenges for commercialization

Ruslan Z. Valiev1, Irina P. Semenova1, В. В. Латыш2, Andrey Shcherbakov1, E. Yakushina1
1Nanocenter, Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa, Russia
2Innovation Scientific Technical Center Iskra, Ufa, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine (Springer, Berlin, Germany, 2001).

A. I. Igolkin, “Titanium in Medicine,” Titan, No. 1, 86 (1993).

S. L. Vasin, E. A. Nemets, N. V. Perova, et al., in Biocompatibility, Ed. by I. V. Sevast’yanov (VNIIMI, Moscow, 1999) [in Russian].

B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metallography and Thermal Treatment of Nonferrous Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2001), p. 416 [in Russian].

R. Z. Valiev, “Preparation of Nanostructured Materials and Alloys with Unique Properties under Severe Plastic Deformation,” Ross. Nanotekhnol. 1, 208–216 (2006).

R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced under Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

A. A. Popov, I. Yu. Pyshmintsev, S. L. Demakov, et al., “Structural and Mechanical Properties of Nanocrystalline Titanium Processed by Severe Deformation Processing,” Scr. Mater. 37, 1089–1094 (1997).

A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Advanced Mechanical Properties of Pure Titanium with Ultrafine-Grained Structure,” Scr. Mater. 45, 747–752 (2001).

S. P. Malysheva, G. A. Salishchev, R. M. Galeev, et al., “Changes in the Structure and Mechanical Properties of Submicrocrystalline Titanium during Deformation in a Temperature Range of (0.15–0.45)T m,” Fiz. Met. Metalloved. 95(4), 98–105 (2003) [Phys. Met. Metallogr. 95 (4), 390–397 (2003)].

Yu. P. Sharkeev, A. Yu. Eroshenko, A. D. Bratchikov, et al., “Bulk Ultrafine-Grained Titanium with High Mechanical Properties for Medical Implants,” Nanotekhnika, No. 3, 81–87 (2007).

C. Yao, E. B. Slamovich, J. Qazi, et al., “Improved Bone Cell Adhesion on Ultrafine-Grained Titanium and Ti-6Al-4V,” Ceram. Trans. 159, 239 (2005).

R. Z. Valiev and T. G. Langdon, “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

V. V. Latysh, G. Kh. Salimgareeva, I. P. Semenova, et al., “A Method for Thermomechanical Treatment of Titanium Blanks,” RF Patent No. 2285737 RUC1, C22F1/18 (October 20, 2006).

R. Z. Valiev, G. I. Raab, D. V. Gunderov, et al., “Development of the Severe Plastic Deformation Methods for Producing Bulk Nanostructured Materials with Unique mechanical Properties,” Nanotekhnika, No. 2, 32–43 (2006).

R. Z. Valiev, A. V. Sergueeva, and A. K. Mukherjee, “The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium,” Scr. Mater. 49, 669–674 (2003).

I. P. Semenova, V. V. Latysh, G. Kh. Sadikova, and R. Z. Valiev, “Microstructure and Mechanical Properties of Long-Sized Titanium Rods with an Ultrafine-Grained Structure,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 15(1), 81–85 (2005).

Yu. R. Kolobov, R. Z. Valiev, A. P. Zhilyaev, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001; Cambridge International Science, Cambridge, 2007).

A. Yu. Vinogradov and S. Khasimoto, “Fatigue of Ultrafine-Grained Materials Produced by Equal-Channel Angular Pressing,” Metally, No. 1, 51–62 (2004).

R. Z. Valiev, R. K. Islamgaliev, and I. P. Semenova, “Superplasticity in Nanostructured Materials: New Challenges,” Mater. Sci. Eng., A 463, 2–7 (2007).

A. Yu. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic Behavior of Ultrafine-Grained Titanium Produced by Severe Plastic Deformation,” Mater. Sci. Eng., A 318 163–173 (2001).

I. P. Semenova, G. Kh. Salimgareeva, V. V. Latysh, et al., “Enhancement of the Fatigue Properties of Titanium as a Result of the Formation of the Ultrafine-Grained Structure,” MiTOM (2007) (in press).

G. Haritos, Th. Nicholas, and D. B. Lanning, “Notch Size Effects in HCF Behavior of Ti-6Al-4V,” Int. J. Fatigue 21 643–652 (1999).

E. Eisenbarth, D. Velten, K. Schenk-Meuser, et al., “Interactions between Cells and Titanium Surfaces,” Biomol. Eng. 19, 243 (2002).

S. Faghihi, A. P. Zhilyaev, J. A. Szpunar, et al., “Nanostructuring of a Titanium Material by High-Pressure Torsion Improves Pre-Osteoblast Attachment,” Adv. Mater. 19, 1069–1073 (2007).

C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, “Biomedical Applications of Titanium and Its Alloys,” JOM 60(3), 46–49 (2008).

S. Faghihi, F. Azari, A. P. Zhilyaev, et al., “Cellular and Molecular Interactions between MC3T3-E1 Pre-Osteoblasts and Nanostructured Titanium Produced by High-Pressure Torsion,” Biomaterials 28, 3887–3895 (2007).

J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova, Nanostructured Titanium—Application in Dental Implants (Technical University of Ostrava, Ostrava, Czech Republic, 2006), pp. 177–185.

“A Device for Correction and Fixation of the Spine,” RF Patent No. 2 003 121 585 (July 18, 2005).

L. S. Morais, G. G. Serra, C. A. Muller, et al., “Titanium Alloy Mini-Implants for Orthodontic Anchorage: Immediate Loading and Metal Ion Release,” Biomaterialia 3, 331–339 (2007).

L. K. Shamina, “Potential of the Enterprise,” Innovatsii, No. 9, 58 (2007).