Nanostructured electrocatalysts with tunable activity and selectivity

Nature Reviews Materials - Tập 1 Số 4
Hemma Mistry1, Ana Sofía Varela2, Stefanie Kühl2, Peter Strasser2, Beatriz Roldán Cuenya3
1Department of Physics, University of Central Florida, Orlando, 32816, Florida, USA
2Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany
3Department of Physics, Ruhr-University Bochum, Bochum 44780, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vielstich, W., Lamm, A. & Gasteiger, H. Handbook of Fuel Cells — Fundamentals, Technology, and Applications (Wiley, 2003).

Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

Evans, U. R. Cathodic reduction of oxygen in fuel cells and corrosion cells. Nature 218, 602–603 (1968).

Liang, C. C. & Juliard, A. L. Reduction of oxygen at platinum electrode. Nature 207, 629–630 (1965).

Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

Markovic´, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

Jiao, Y., Zheng, Y., Jaroniec, M. T. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

Nie, Y., Li, L. & Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015).

Stephens, I. E. L., Bondarenko, A. S., Andersen, U. G., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

Bing, Y., Liu, H., Zhang, L., Ghosh, D. & Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010).

Krischer, K. & Savinova, E. R. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, J. ) 1873–1905 (Wiley, 2008).

Markovic, N., Schmidt, T., Stamenkovic, V. & Ross, P. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105–116 (2001).

Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

Stephens, I. E. L. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011).

Adžic´, R., Strbac, S. & Anastasijevic´, N. Electrocatalysis of oxygen on single crystal gold electrodes. Mater. Chem. Phys. 22, 349–375 (1989).

Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819 (1998).

Kibler, L. A., El-Aziz, A. M., Hoyer, R. & Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. Engl. 44, 2080–2084 (2005).

Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. Engl. 44, 2132–2135 (2005).

Genorio, B. et al. Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells. Angew. Chem. Int. Ed. Engl. 50, 5468–5472 (2011).

Genorio, B. et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 9, 998–1003 (2010).

Kinoshita, K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 137, 845–848 (1990).

Mukerjee, S. Particle size and structural effects in platinum electrocatalysis. J. Appl. Electrochem. 20, 537–548 (1990).

Mukerjee, S. & McBreen, J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J. Electroanal. Chem. 448, 163–171 (1998).

Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).

Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring diskPt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).

Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. L. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

Mayrhofer, K. et al. The impact of geometric and surface electronic properties of Pt catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. Engl. 51, 4641–4643 (2012).

Takasu, Y. et al. Size effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 41, 2595–2600 (1996).

Gara, M., Ward, K. & Compton, R. Nanomaterial modified electrodes: evaluating oxygen reduction catalysts. Nanoscale 5, 7304–7311 (2013).

Schneider, A. et al. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931–1943 (2008).

Seidel, Y. et al. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 140, 167–184 (2009).

Kumar, S. & Zou, S. Electroreduction of O2 on uniform arrays of Pt and PtCo nanoparticles. Electrochem. Commun. 8, 1151–1157 (2006).

Yang, H., Kumar, S. & Zou, S. Electroreduction of O2 on uniform arrays of Pt nanoparticles. J. Electroanal. Chem. 688, 180–188 (2013).

Speder, J. et al. The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4, 14971–14978 (2014).

Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12, 919–924 (2013).

Thompsett, D. in Handbook of Fuel Cells: Fundamentals Technology and Applications Vol. 3 Ch. 37 (eds Vielstich, W., Lamm, A. & Gasteiger, H. ) 467 (Wiley, 2003).

Strasser, P. Catalysts by platonic design. Science 349, 379–380 (2015).

Carpenter, M. K., Moylan, T. E., Kukreja, R. S., Atwan, M. H. & Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 134, 8535–8542 (2012).

Cui, C. et al. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012).

Gan, L. et al. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346, 1502–1506 (2014).

Wu, J. B. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).

Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).

Cui, C. et al. Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discuss. 162, 91–112 (2013).

Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

Cui, C. et al. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. J. Am. Chem. Soc. 136, 4813–4816 (2014).

Paulus, U. et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798 (2002).

Paulus, U. et al. Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2002).

Stamenkovic, V., Schmidt, T., Ross, P. & Markovic, N. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

Anderson, A. B. et al. Activation energies for oxygen reduction on platinum alloys: theory and experiment. J. Phys. Chem. B 109, 1198–1203 (2005).

Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. Engl. 118, 2963–2967 (2006).

Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

Wang, C. et al. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J. Phys. Chem. C 113, 19365–19368 (2009).

Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2010).

van der Vliet, D. F. et al. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. Engl. 124, 3193–3196 (2012).

Wang, C. et al. Rational development of ternary alloy electrocatalysts. J. Phys. Chem. Lett. 3, 1668–1673 (2012).

Wang, C., Markovic, N. M. & Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891–898 (2012).

Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

Zhang, J. et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 127, 12480–12481 (2005).

Nilekar, A. U. et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46, 276–284 (2007).

Wang, J. X. et al. Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009).

Sasaki, K. et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. Engl. 49, 8602–8607 (2010).

Karan, H. I. et al. Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catal. 2, 817–824 (2012).

Sasaki, K. et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012).

Zhang, Y. et al. Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal. Today 202, 50–54 (2013).

Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).

Mani, P. Srivastava, R. & Strasser, P. Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008).

Strasser, P. in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability (eds Lamm, A., Vielstich, W., Yokokawa, H. & Gasteiger, H. A. ) 30–47 (Wiley, 2010).

Strasser, P. Dealloyed core–shell fuel cell electrocatalysts. Rev. Chem. Eng. 25, 255–295 (2009).

Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

Gan, L., Heggen, M., O'Malley, R., Theobald, B. & Strasser, P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138 (2013).

Oezaslan, M., Hascheé, F.d.r. & Strasser, P. Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 4, 3273–3291 (2013).

Gan, L., Heggen, M., Rudi, S. & Strasser, P. Core–shell compositional fine structures of dealloyed PtxNi1−x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12, 5423–5430 (2012).

Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015). This study reported the most active and stable performance of a size-controlled dealloyed PtNi3 core–shell nanoparticle catalyst during a realistic PEM fuel cell test.

Neyerlin, K. C. Srivastava, R., Yu, C. & Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009).

Wu, J. B., Gross, A. & Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 11, 798–802 (2011).

Wu, J. et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134, 11880–11883 (2012).

Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O. & Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013).

Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E. ) 89–189 (Springer, 2008).

Costentin, C., Robert, M. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

Varela, A. S. et al. Metal-doped nitrogenated carbon as efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. Engl. 54, 10758–10762 (2015).

Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

Shi, C., Hansen, H. A., Lausche, A. C. & Nørskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).

Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, Understanding, J. K. Trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

Akhade, S. A. et al. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Phys. Chem. Chem. Phys. 16, 20429–20435 (2014).

Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

Durand, W. J., Peterson, A. A., Studt, F., Abild-Pedersen, F. & Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354–1359 (2011).

Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

Schouten, K., Kwon, Y., Van der Ham, C., Qin, Z. & Koper, M. T. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. Engl. 52, 2459–2462 (2013).

Calle-Vallejo, F. and Koper, M. T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. Engl. 125, 7423–7426 (2013).

Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2012).

Ono, L. K., Croy, J. R., Heinrich, H. & Roldan Cuenya, B. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001): size effects. J. Phys. Chem. C 115, 16856–16866 (2011).

Ono, L. K. & Roldan Cuenya, B. Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects. J. Phys. Chem. C 112, 4676–4686 (2008).

Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014). This work unravels the particle size dependence of CO2 electroreduction over Cu using model micelle-synthesized nanoparticles.

Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

Baturina, O. A. et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 4, 3682–3695 (2014).

Ono, L. K. & Cuenya, B. R. Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catal. Lett. 113, 86–94 (2007).

Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2015). This study describes how interparticle distance and nanoparticle size can be used to control activity and selectivity during CO2 electroreduction over Cu, providing important insights into mass transport and diffusion phenomena during this reaction on well dispersed nanostructured materials.

Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. Engl. 54, 5179–5182 (2015).

Chen, C. S. et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015).

Back, S., Yeom, M. S. & Jung, Active, Y. Sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). This study introduced oxide-derived Cu as a new class of catalyst for CO2 electroreduction with considerably improved activity at low overpotentials.

Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

Jia, F., Yu, X. & Zhang, L. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J. Power Sources 252, 85–89 (2014).

Esposito, D. V. et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chem. Int. Ed. Engl. 49, 9859–9862 (2010).

Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

Januszewska, A., Jurczakowski, R. & Kulesza, P. J. CO2 electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au (111). Langmuir 30, 14314–14321 (2014).

Reske, R. et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J. Phys. Chem. Lett. 4, 2410–2413 (2013).

Varela, A. S. et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500–20508 (2013).

Friebel, D. et al. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au (111) model catalysts for CO2 electroreduction. J. Phys. Chem. C 118, 7954–7961 (2014).

Schlaup, C., Horch, S. & Chorkendorff, I. On the stability of copper overlayers on Au (111) and Au (100) electrodes under low potential conditions and in the presence on CO and CO2 . Surf. Sci. 631, 155–164 (2015).

Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 5948 (2014).

Zhao, W., Yang, L., Yin, Y. & Jin, M. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2, 902–906 (2014).

Christophe, J., Doneux, T. & Buess-Herman, C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper–gold alloys. Electrocatalysis 3, 139–146 (2012).

Hirunsit, P. Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J. Phys. Chem. C 117, 8262–8268 (2013).

Kim, D. et al. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2 . Phys. Chem. Chem. Phys. 17, 824–830 (2015).

Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–12201 (2014).

Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

Frese, K. W. Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J. Electrochem. Soc. 138, 3338–3344 (1991).

Zhang, Y.-J. & Peterson, A. A. Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. Phys. Chem. Chem. Phys. 17, 4505–4515 (2015).

Le, M. et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45–E49 (2011).

Andrews, E. et al. Electrochemical reduction of CO2 at Cu nanocluster/(1010) ZnO electrodes. J. Electrochem. Soc. 160, H841–H846 (2013).

Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

Gao, D. et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem. Commun. 55, 1–5 (2015).

Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1 85, 2309–2326 (1989).

Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and Co at a Cu electrode. Bull. Chem. Soc. Japan 64, 123–127 (1991).

Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The electrochemical characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 699, 6–9 (2013).

Koper, M. T. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

Colmati, F. et al. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss. 140, 379–397 (2009).

Lai, S. C. & Koper, M. T. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss. 140, 399–416 (2009).

Colmati, F. et al. The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys. Chem. Chem. Phys. 11, 9114–9123 (2009).

Lai, S. C. & Koper, M. T. The influence of surface structure on selectivity in the ethanol electro-oxidation reaction on platinum. J. Phys. Chem. Lett. 1, 1122–1125 (2010).

Del Colle, V., Berna, A., Tremiliosi-Filho, G., Herrero, E. & Feliu, J. Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. Phys. Chem. Chem. Phys. 10, 3766–3773 (2008).

Lai, S. C. & Koper, M. T. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 11, 10446–10456 (2009).

Zhou, Z. Y. et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. Engl. 49, 411–414 (2010).

Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

Tian, N., Zhou, Z.-Y., Yu, N.-F., Wang, L.-Y. & Sun, S.-G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 132, 7580–7581 (2010).

Zhou, W. et al. Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B 46, 273–285 (2003).

Lamy, C., Rousseau, S., Belgsir, E., Coutanceau, C. & Léger, J.-M. Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim. Acta 49, 3901–3908 (2004).

Du, W. et al. Platinum–tin oxide core–shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 136, 10862–10865 (2014).

Erini, N. et al. Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2, 903–908 (2015).

Erini, N. et al. Ethanol electro-oxidation on ternary platinum–rhodium–tin nanocatalysts: insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 4, 1859–1867 (2014).

Kowal, A. et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 . Nat. Mater. 8, 325–330 (2009). This study reports on a PtRhSnO2/C ethanol electro-oxidation catalyst with high efficiency for C–C bond breaking at low overpotentials, with key insights into the mechanisms behind the improved performance of these catalysts.

Erini, N. et al. Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J. Power Sources 294, 299–304 (2015).

Li, M. et al. Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim. Acta 55, 4331–4338 (2010).

Du, W. et al. Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. J. Mater. Chem. 21, 8887–8892 (2011).

Li, M. et al. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 135, 132–141 (2012).

Li, M., Liu, P. & Adzic, R. R. Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J. Phys. Chem. Lett. 3, 3480–3485 (2012).

Loukrakpam, R. et al. Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electrooxidation: Pt layer strain and morphology effects. Phys. Chem. Chem. Phys. 16, 18866–18876 (2014).