Ibrahim, 2008, Renewable Sustainable Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023
Ishida, 2014, Energy Procedia, 49, 1970, 10.1016/j.egypro.2014.03.209
Lange, 2015, Int. J. Hydrogen Energy, 40, 12108, 10.1016/j.ijhydene.2015.07.056
Ying, 2016, Energy Convers. Manage., 115, 26, 10.1016/j.enconman.2016.02.046
Hu, 2016, Int. J. Hydrogen Energy, 41, 773, 10.1016/j.ijhydene.2015.09.100
Zhang, 2016, Int. J. Hydrogen Energy, 41, 2215, 10.1016/j.ijhydene.2015.12.067
Agrafiotis, 2015, Renewable Sustainable Energy Rev., 42, 254, 10.1016/j.rser.2014.09.039
El-Emam, 2015, Int. J. Hydrogen Energy, 40, 11168, 10.1016/j.ijhydene.2014.12.098
Ye, 2015, Appl. Surf. Sci., 358, 15, 10.1016/j.apsusc.2015.08.173
Gannouni, 2015, Int. J. Hydrogen Energy, 40, 7252, 10.1016/j.ijhydene.2015.04.057
Chen, 2016, Electrochem. Commun., 63, 10, 10.1016/j.elecom.2015.12.003
Ahmad, 2015, Renewable Sustainable Energy Rev., 43, 599, 10.1016/j.rser.2014.10.101
Kibria, 2016, J. Mater. Chem. A, 4, 2801, 10.1039/C5TA07364B
Huang, 2015, J. Mater. Chem. A, 3, 15824, 10.1039/C5TA03594E
Bhatt, 2015, J. Mater. Chem. A, 3, 10632, 10.1039/C5TA00257E
Wu, 2016, Appl. Energy, 165, 81, 10.1016/j.apenergy.2015.12.075
Trasatti, 1999, J. Electroanal. Chem., 476, 90, 10.1016/S0022-0728(99)00364-2
T. Smolinka , M.Günther and J.Garche, NOW-Studie: Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Technical report, Fraunhofer ISE, 2011
Carmo, 2013, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151
Fabbri, 2014, Catal. Sci. Technol., 4, 3800, 10.1039/C4CY00669K
Wang, 2015, Nanoscale, 7, 19764, 10.1039/C5NR06718A
Zeng, 2015, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K
Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E
Safizadeh, 2015, Int. J. Hydrogen Energy, 40, 256, 10.1016/j.ijhydene.2014.10.109
Bajdich, 2013, J. Am. Chem. Soc., 135, 13521, 10.1021/ja405997s
Cherevko, 2016, Catal. Today, 262, 170, 10.1016/j.cattod.2015.08.014
Durst, 2014, Energy Environ. Sci., 7, 2255, 10.1039/C4EE00440J
Li, 2016, Nanoscale, 8, 1676, 10.1039/C5NR07370G
Lu, 2015, Nat. Commun., 6, 6567, 10.1038/ncomms7567
Bockris, 1952, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692
Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8
G. Eliezer , Physical Electrochemistry, John Wiley, New York, 2011
Koper, 2011, J. Electroanal. Chem., 660, 254, 10.1016/j.jelechem.2010.10.004
Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008
Xu, 2014, Chem. Soc. Rev., 43, 2439, 10.1039/c3cs60351b
Guo, 2011, Nano Today, 6, 240, 10.1016/j.nantod.2011.04.007
Zhang, 2012, Chem. Soc. Rev., 41, 7016, 10.1039/c2cs35210a
Bai, 2014, Angew. Chem., Int. Ed., 53, 12120, 10.1002/anie.201406468
Markovic, 1997, J. Phys. Chem. B, 101, 5405, 10.1021/jp970930d
Gómez, 2004, J. Phys. Chem. B, 108, 228, 10.1021/jp034982g
Chen, 2009, Nano Today, 4, 81, 10.1016/j.nantod.2008.09.002
Regmi, 2015, J. Mater. Chem. A, 3, 10085, 10.1039/C5TA01296A
Esposito, 2012, J. Am. Chem. Soc., 134, 3025, 10.1021/ja208656v
Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313
Subbaraman, 2011, Science, 334, 1256, 10.1126/science.1211934
Yin, 2015, Nat. Commun., 6, 6430, 10.1038/ncomms7430
Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752
Liu, 2013, Sci. Rep., 3, 1404, 10.1038/srep01404
Chen, 2014, Science, 343, 1339, 10.1126/science.1249061
Miles, 1976, J. Electrochem. Soc., 123, 1459, 10.1149/1.2132619
McArthur, 2014, J. Power Sources, 266, 365, 10.1016/j.jpowsour.2014.05.036
Fei, 2015, Nat. Commun., 6, 8668, 10.1038/ncomms9668
Soares, 1992, J. Electrochem. Soc., 139, 98, 10.1149/1.2069207
Raj, 1993, J. Mater. Sci., 28, 4375, 10.1007/BF01154945
Jakšić, 1987, Int. J. Hydrogen Energy, 12, 727, 10.1016/0360-3199(87)90090-5
McKone, 2013, ACS Catal., 3, 166, 10.1021/cs300691m
Wang, 2015, Nano Energy, 12, 9, 10.1016/j.nanoen.2014.12.007
Rosalbino, 2005, J. Alloys Compd., 403, 275, 10.1016/j.jallcom.2005.03.075
Müller, 2014, Int. J. Hydrogen Energy, 39, 8926, 10.1016/j.ijhydene.2014.03.151
Müller, 2016, J. Power Sources, 304, 196, 10.1016/j.jpowsour.2015.11.008
Danilovic, 2012, Angew. Chem., 124, 12663, 10.1002/ange.201204842
Gong, 2014, Nat. Commun., 5, 4695, 10.1038/ncomms5695
Lang, 2015, ACS Appl. Mater. Interfaces, 7, 9098, 10.1021/acsami.5b00873
Tavakkoli, 2015, Angew. Chem., 127, 4618, 10.1002/ange.201411450
Yang, 2015, Energy Environ. Sci., 8, 3563, 10.1039/C5EE02460A
Deng, 2014, Energy Environ. Sci., 7, 1919, 10.1039/C4EE00370E
Wirth, 2012, Appl. Catal., B, 126, 225, 10.1016/j.apcatb.2012.07.023
Michalsky, 2014, ACS Catal., 4, 1274, 10.1021/cs500056u
Ma, 2014, Int. J. Hydrogen Energy, 39, 18803, 10.1016/j.ijhydene.2014.09.062
Wan, 2014, Angew. Chem., 126, 6525, 10.1002/ange.201402998
Wan, 2013, Chem. Commun., 49, 10409, 10.1039/c3cc46551a
Ma, 2014, RSC Adv., 4, 44175, 10.1039/C4RA05673F
Ma, 2014, J. Phys. Chem. C, 118, 9485, 10.1021/jp501021t
Ge, 2014, Electrochim. Acta, 134, 182, 10.1016/j.electacta.2014.04.113
Gao, 2009, Chem. Mater., 21, 5560, 10.1021/cm9014578
Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C
Tang, 2015, J. Power Sources, 296, 18, 10.1016/j.jpowsour.2015.07.016
Wu, 2015, Nat. Commun., 6, 6512, 10.1038/ncomms7512
Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h
Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144
Šljukić, 2015, J. Mater. Chem. A, 3, 15505, 10.1039/C5TA02346G
Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f
Wang, 2015, J. Am. Chem. Soc., 137, 15753, 10.1021/jacs.5b07924
Ma, 2012, J. Am. Chem. Soc., 134, 1954, 10.1021/ja2093053
Xiong, 2015, J. Mater. Chem. A, 3, 1863, 10.1039/C4TA05686H
Wan, 2015, Chem. Mater., 27, 4281, 10.1021/acs.chemmater.5b00621
Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a
Ma, 2007, Int. J. Hydrogen Energy, 32, 2824, 10.1016/j.ijhydene.2006.12.022
Ham, 2008, Int. J. Hydrogen Energy, 33, 6865, 10.1016/j.ijhydene.2008.05.045
Tang, 2015, Int. J. Hydrogen Energy, 40, 3229, 10.1016/j.ijhydene.2014.12.105
Lin, 2015, J. Mater. Chem. A, 3, 14609, 10.1039/C5TA02908B
Fan, 2015, ACS Nano, 9, 5125, 10.1021/acsnano.5b00425
Meng, 2015, J. Mater. Chem. A, 3, 18572, 10.1039/C5TA05589J
Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700
Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s
Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Calandra, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 88, 245428, 10.1103/PhysRevB.88.245428
Putungan, 2015, Phys. Chem. Chem. Phys., 17, 21702, 10.1039/C5CP03799A
Gao, 2015, J. Phys. Chem. C, 119, 13124, 10.1021/acs.jpcc.5b04658
Li, 2016, Nat. Mater., 15, 48, 10.1038/nmat4465
Kumar, 2015, Chem. Commun., 51, 5052, 10.1039/C4CC10311D
Gao, 2015, Nat. Commun., 6, 7493, 10.1038/ncomms8493
Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b
Liu, 2015, J. Power Sources, 275, 588, 10.1016/j.jpowsour.2014.11.039
Cheng, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Ren, 2015, J. Mater. Chem. A, 3, 10693, 10.1039/C5TA02198G
Seo, 2015, ACS Nano, 9, 3728, 10.1021/acsnano.5b00786
You, 2015, Chem. Commun., 51, 4252, 10.1039/C4CC09849H
Huang, 2014, Nanoscale, 6, 10673, 10.1039/C4NR02014F
Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439
Dai, 2015, ACS Appl. Mater. Interfaces, 7, 27242, 10.1021/acsami.5b08420
Bonde, 2009, Faraday Discuss., 140, 219, 10.1039/B803857K
Wang, 2015, J. Am. Chem. Soc., 137, 1587, 10.1021/ja511572q
Long, 2015, J. Am. Chem. Soc., 137, 11900, 10.1021/jacs.5b07728
Ren, 2015, Chem. Commun., 51, 15997, 10.1039/C5CC06847A
Wang, 2015, Nano Energy, 18, 1, 10.1016/j.nanoen.2015.10.001
Xu, 2014, ACS Nano, 8, 8468, 10.1021/nn503027k
Dong, 2015, Sci. Rep., 5, 17542, 10.1038/srep17542
Xu, 2015, Electrochim. Acta, 174, 653, 10.1016/j.electacta.2015.06.040
Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920
Tan, 2014, Adv. Mater., 26, 8023, 10.1002/adma.201403808
Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476
Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982
Wang, 2014, Adv. Mater., 26, 3761, 10.1002/adma.201400265
Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E
Ting, 2016, ACS Catal., 6, 861, 10.1021/acscatal.5b02369
Vrubel, 2013, ACS Catal., 3, 2002, 10.1021/cs400441u
Carim, 2014, J. Mater. Chem. A, 2, 13835, 10.1039/C4TA02611J
Liu, 2005, J. Am. Chem. Soc., 127, 14871, 10.1021/ja0540019
Shia, 2016, Chem. Soc. Rev., 45, 1529, 10.1039/C5CS00434A
Read, 2016, ACS Appl. Mater. Interfaces, 8, 12798, 10.1021/acsami.6b02352
Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e
Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646
Feng, 2014, Phys. Chem. Chem. Phys., 16, 5917, 10.1039/c4cp00482e
Kucernak, 2014, J. Mater. Chem. A, 2, 17435, 10.1039/C4TA03468F
Laursen, 2015, Energy Environ. Sci., 8, 1027, 10.1039/C4EE02940B
Yang, 2015, Adv. Mater., 27, 3175, 10.1002/adma.201500894
Popczun, 2015, J. Mater. Chem. A, 3, 5420, 10.1039/C4TA06642A
Huang, 2014, Nano Energy, 9, 373, 10.1016/j.nanoen.2014.08.013
Lv, 2016, J. Mater. Chem. A, 4, 1454, 10.1039/C5TA08715E
Liu, 2016, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727
Chang, 2016, Green Chem., 18, 2287, 10.1039/C5GC02899J
Deng, 2016, J. Mater. Chem. A, 4, 59, 10.1039/C5TA05453B
Han, 2015, Adv. Funct. Mater., 25, 3899, 10.1002/adfm.201501390
Feng, 2016, Chem. Commun., 52, 1633, 10.1039/C5CC08991C
Kibsgaard, 2014, Angew. Chem., 126, 14661, 10.1002/ange.201408222
Liu, 2016, Nat. Commun., 7, 10771, 10.1038/ncomms10771
Wang, 2016, Energy Environ. Sci., 9, 1468, 10.1039/C5EE03801D
Pan, 2015, J. Power Sources, 297, 45, 10.1016/j.jpowsour.2015.07.077
Pan, 2016, J. Mater. Chem. A, 4, 4745, 10.1039/C6TA00575F
Janas, 2014, Nanoscale, 6, 3037, 10.1039/c3nr05636h
Huang, 2014, Sci. Rep., 4, 7557, 10.1038/srep07557
Zheng, 2014, ACS Nano, 8, 5290, 10.1021/nn501434a
Cui, 2014, Chem. Commun., 50, 9340, 10.1039/C4CC02713B
Cheng, 2014, Electrochim. Acta, 143, 291, 10.1016/j.electacta.2014.08.001
Liu, 2014, Sci. Rep., 4, 6843, 10.1038/srep06843
Zhang, 2014, RSC Adv., 4, 49161, 10.1039/C4RA08555H
Xie, 2015, J. Mater. Chem. A, 3, 78, 10.1039/C4TA04671D
Dai, 2014, Nat. Commun., 5, 3605, 10.1038/ncomms4605
Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783
Chhetri, 2016, Energy Environ. Sci., 9, 95, 10.1039/C5EE02521D
Wei, 2015, J. Mater. Chem. A, 3, 7210, 10.1039/C5TA00966A
Zhou, 2015, Nano Energy, 16, 357, 10.1016/j.nanoen.2015.07.008
Liu, 2015, J. Mater. Chem. A, 3, 8840, 10.1039/C5TA01209K
Wang, 2015, J. Mater. Chem. A, 3, 19669, 10.1039/C5TA05384F
Trotochaud, 2012, J. Am. Chem. Soc., 134, 17253, 10.1021/ja307507a
Gerken, 2014, Energy Environ. Sci., 7, 2376, 10.1039/C4EE00436A
Yeo, 2011, J. Am. Chem. Soc., 133, 5587, 10.1021/ja200559j
Seitz, 2015, J. Phys. Chem. Lett., 6, 4178, 10.1021/acs.jpclett.5b01928
Gorlin, 2014, J. Am. Chem. Soc., 136, 4920, 10.1021/ja407581w
Wu, 2015, J. Am. Chem. Soc., 137, 7071, 10.1021/jacs.5b04142
Liu, 2014, Electrochim. Acta, 140, 359, 10.1016/j.electacta.2014.04.036
Zhan, 2015, ACS Appl. Mater. Interfaces, 7, 12930, 10.1021/acsami.5b02670
Sayeed, 2016, J. Mater. Chem. A, 4, 991, 10.1039/C5TA09125J
Xing, 2014, J. Mater. Chem. A, 2, 18435, 10.1039/C4TA03776F
Wang, 2015, Catal. Today, 245, 74, 10.1016/j.cattod.2014.06.006
Liu, 2015, Electrochem. Commun., 60, 92, 10.1016/j.elecom.2015.08.011
Chen, 2015, Inorg. Chem. Front., 3, 236, 10.1039/C5QI00197H
Liu, 2015, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727
Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069
Mattioli, 2013, J. Am. Chem. Soc., 135, 15353, 10.1021/ja401797v
Chen, 2015, Phys. Chem. Chem. Phys., 17, 29387, 10.1039/C5CP02876K
Zhang, 2015, Catal. Commun., 67, 78, 10.1016/j.catcom.2015.04.012
Hu, 2008, J. Am. Chem. Soc., 130, 16136, 10.1021/ja806400e
Li, 2015, J. Power Sources, 294, 103, 10.1016/j.jpowsour.2015.06.056
Li, 2015, RSC Adv., 5, 76026, 10.1039/C5RA12822F
Xiao, 2014, Chem. Commun., 50, 10122, 10.1039/C4CC04922E
Nikolov, 1997, J. Electroanal. Chem., 429, 157, 10.1016/S0022-0728(96)05013-9
Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e
Lv, 2015, Dalton Trans., 44, 4148, 10.1039/C4DT03803G
Wu, 2011, J. Mater. Chem., 21, 12344, 10.1039/c1jm11312g
Bikkarolla, 2015, J. Power Sources, 281, 243, 10.1016/j.jpowsour.2015.01.192
Yu, 2015, Chem. Commun., 51, 14361, 10.1039/C5CC05511C
Wang, 2013, Nanoscale, 5, 5312, 10.1039/c3nr00444a
Pletcher, 2016, Electrochim. Acta, 188, 286, 10.1016/j.electacta.2015.10.020
Gu, 2015, RSC Adv., 5, 8882, 10.1039/C4RA13122C
Zhao, 2015, Carbon, 92, 64, 10.1016/j.carbon.2015.03.002
Yang, 2014, ACS Nano, 8, 9518, 10.1021/nn503760c
Li, 2015, Chem. Commun., 51, 15012, 10.1039/C5CC04936A
F. N. Büchi , M.Inaba and T. J.Schmidt, Polymer Electrolyte Fuel Cell Durability, Springer Science and Business Media LLC, New York, 2009
Minguzzi, 2012, Chem. Sci., 3, 217, 10.1039/C1SC00516B
Yan, 2016, Carbon, 99, 195, 10.1016/j.carbon.2015.12.011
Zhang, 2015, J. Power Sources, 278, 464, 10.1016/j.jpowsour.2014.12.092
Han, 2015, Chem. Commun., 51, 11626, 10.1039/C5CC02626A
Zhou, 2013, Energy Environ. Sci., 6, 2921, 10.1039/c3ee41572d
Swesi, 2016, Energy Environ. Sci., 9, 1771, 10.1039/C5EE02463C
Kauffman, 2016, ACS Catal., 6, 1225, 10.1021/acscatal.5b02633
Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105
Yeo, 2012, J. Phys. Chem. C, 116, 8394, 10.1021/jp3007415
Liang, 2015, Chem. Mater., 27, 5702, 10.1021/acs.chemmater.5b02177
Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d
Lu, 2015, Nat. Commun., 6, 6616, 10.1038/ncomms7616
Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s
Li, 2011, Phys. Chem. Chem. Phys., 13, 1162, 10.1039/C0CP00993H
Bates, 2015, ACS Catal., 6, 155, 10.1021/acscatal.5b01481
Chen, 2014, Energy Environ. Sci., 7, 1382, 10.1039/c3ee43811b
Corrigan, 1987, J. Electrochem. Soc., 134, 377, 10.1149/1.2100463
Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c
Fan, 2014, Chem. Soc. Rev., 43, 7040, 10.1039/C4CS00160E
Scavetta, 2002, Electrochim. Acta, 47, 2451, 10.1016/S0013-4686(02)00103-2
Song, 2014, J. Am. Chem. Soc., 136, 16481, 10.1021/ja5096733
Jiang, 2015, J. Power Sources, 278, 445, 10.1016/j.jpowsour.2014.12.085
Li, 2015, Chem. Sci., 6, 6624, 10.1039/C5SC02417J
Song, 2014, Nat. Commun., 5, 4477, 10.1038/ncomms5477
Vlamidis, 2016, Electrochim. Acta, 188, 653, 10.1016/j.electacta.2015.12.059
Lu, 2014, Chem. Commun., 50, 6479, 10.1039/C4CC01625D
Lu, 2016, Chem. Commun., 52, 908, 10.1039/C5CC08845C
Long, 2015, Chem. Commun., 51, 1120, 10.1039/C4CC08856E
Yang, 2014, Nanoscale, 6, 11789, 10.1039/C4NR03371J
Hou, 2016, Energy Environ. Sci., 9, 478, 10.1039/C5EE03440J
Yu, 2015, J. Mater. Chem. A, 3, 6921, 10.1039/C5TA01034A
Tang, 2014, ACS Appl. Mater. Interfaces, 6, 7918, 10.1021/am501256x
Minguzzi, 2012, Chem. Sci., 3, 217, 10.1039/C1SC00516B
McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p
McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p
Neyerlin, 2007, J. Electrochem. Soc., 154, 631, 10.1149/1.2733987