Nanostructured catalysts for electrochemical water splitting: current state and prospects

Journal of Materials Chemistry A - Tập 4 Số 31 - Trang 11973-12000
Xiumin Li1,2,3,4, Xiaogang Hao5,6,7,8, Abuliti Abudula1,2,3,4, Guoqing Guan1,2,4,9,10
1Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
2Hirosaki 036-8560
3Hirosaki University
4Japan
5China
6Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
7Taiyuan 030024
8Taiyuan University of Technology
9North Japan Research Institute for Sustainable Energy (NJRISE)
10North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, Matsubara, Aomori 030-0813, Japan

Tóm tắt

The fundamentals of water electrolysis, current popular electrocatalysts developed for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) in liquid electrolyte water electrolysis are reviewed and discussed.

Từ khóa


Tài liệu tham khảo

Ibrahim, 2008, Renewable Sustainable Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023

Ishida, 2014, Energy Procedia, 49, 1970, 10.1016/j.egypro.2014.03.209

Lange, 2015, Int. J. Hydrogen Energy, 40, 12108, 10.1016/j.ijhydene.2015.07.056

Ying, 2016, Energy Convers. Manage., 115, 26, 10.1016/j.enconman.2016.02.046

Hu, 2016, Int. J. Hydrogen Energy, 41, 773, 10.1016/j.ijhydene.2015.09.100

Zhang, 2016, Int. J. Hydrogen Energy, 41, 2215, 10.1016/j.ijhydene.2015.12.067

Agrafiotis, 2015, Renewable Sustainable Energy Rev., 42, 254, 10.1016/j.rser.2014.09.039

El-Emam, 2015, Int. J. Hydrogen Energy, 40, 11168, 10.1016/j.ijhydene.2014.12.098

Ye, 2015, Appl. Surf. Sci., 358, 15, 10.1016/j.apsusc.2015.08.173

Gannouni, 2015, Int. J. Hydrogen Energy, 40, 7252, 10.1016/j.ijhydene.2015.04.057

Chen, 2016, Electrochem. Commun., 63, 10, 10.1016/j.elecom.2015.12.003

Ahmad, 2015, Renewable Sustainable Energy Rev., 43, 599, 10.1016/j.rser.2014.10.101

Kibria, 2016, J. Mater. Chem. A, 4, 2801, 10.1039/C5TA07364B

Huang, 2015, J. Mater. Chem. A, 3, 15824, 10.1039/C5TA03594E

Bhatt, 2015, J. Mater. Chem. A, 3, 10632, 10.1039/C5TA00257E

Wu, 2016, Appl. Energy, 165, 81, 10.1016/j.apenergy.2015.12.075

Trasatti, 1999, J. Electroanal. Chem., 476, 90, 10.1016/S0022-0728(99)00364-2

T. Smolinka , M.Günther and J.Garche, NOW-Studie: Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Technical report, Fraunhofer ISE, 2011

Carmo, 2013, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151

Fabbri, 2014, Catal. Sci. Technol., 4, 3800, 10.1039/C4CY00669K

Wang, 2015, Nanoscale, 7, 19764, 10.1039/C5NR06718A

Zeng, 2015, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K

Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E

Safizadeh, 2015, Int. J. Hydrogen Energy, 40, 256, 10.1016/j.ijhydene.2014.10.109

Bajdich, 2013, J. Am. Chem. Soc., 135, 13521, 10.1021/ja405997s

Cherevko, 2016, Catal. Today, 262, 170, 10.1016/j.cattod.2015.08.014

Durst, 2014, Energy Environ. Sci., 7, 2255, 10.1039/C4EE00440J

Li, 2016, Nanoscale, 8, 1676, 10.1039/C5NR07370G

Lu, 2015, Nat. Commun., 6, 6567, 10.1038/ncomms7567

Bockris, 1952, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692

Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8

G. Eliezer , Physical Electrochemistry, John Wiley, New York, 2011

Koper, 2011, J. Electroanal. Chem., 660, 254, 10.1016/j.jelechem.2010.10.004

Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008

Xu, 2014, Chem. Soc. Rev., 43, 2439, 10.1039/c3cs60351b

Guo, 2011, Nano Today, 6, 240, 10.1016/j.nantod.2011.04.007

Zhang, 2012, Chem. Soc. Rev., 41, 7016, 10.1039/c2cs35210a

Bai, 2014, Angew. Chem., Int. Ed., 53, 12120, 10.1002/anie.201406468

Markovic, 1997, J. Phys. Chem. B, 101, 5405, 10.1021/jp970930d

Gómez, 2004, J. Phys. Chem. B, 108, 228, 10.1021/jp034982g

Chen, 2009, Nano Today, 4, 81, 10.1016/j.nantod.2008.09.002

Regmi, 2015, J. Mater. Chem. A, 3, 10085, 10.1039/C5TA01296A

Esposito, 2012, J. Am. Chem. Soc., 134, 3025, 10.1021/ja208656v

Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313

Subbaraman, 2011, Science, 334, 1256, 10.1126/science.1211934

Yin, 2015, Nat. Commun., 6, 6430, 10.1038/ncomms7430

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Liu, 2013, Sci. Rep., 3, 1404, 10.1038/srep01404

Chen, 2014, Science, 343, 1339, 10.1126/science.1249061

Miles, 1976, J. Electrochem. Soc., 123, 1459, 10.1149/1.2132619

McArthur, 2014, J. Power Sources, 266, 365, 10.1016/j.jpowsour.2014.05.036

Fei, 2015, Nat. Commun., 6, 8668, 10.1038/ncomms9668

Soares, 1992, J. Electrochem. Soc., 139, 98, 10.1149/1.2069207

Raj, 1993, J. Mater. Sci., 28, 4375, 10.1007/BF01154945

Jakšić, 1987, Int. J. Hydrogen Energy, 12, 727, 10.1016/0360-3199(87)90090-5

McKone, 2013, ACS Catal., 3, 166, 10.1021/cs300691m

Wang, 2015, Nano Energy, 12, 9, 10.1016/j.nanoen.2014.12.007

Rosalbino, 2005, J. Alloys Compd., 403, 275, 10.1016/j.jallcom.2005.03.075

Müller, 2014, Int. J. Hydrogen Energy, 39, 8926, 10.1016/j.ijhydene.2014.03.151

Müller, 2016, J. Power Sources, 304, 196, 10.1016/j.jpowsour.2015.11.008

Danilovic, 2012, Angew. Chem., 124, 12663, 10.1002/ange.201204842

Gong, 2014, Nat. Commun., 5, 4695, 10.1038/ncomms5695

Lang, 2015, ACS Appl. Mater. Interfaces, 7, 9098, 10.1021/acsami.5b00873

Tavakkoli, 2015, Angew. Chem., 127, 4618, 10.1002/ange.201411450

Yang, 2015, Energy Environ. Sci., 8, 3563, 10.1039/C5EE02460A

Deng, 2014, Energy Environ. Sci., 7, 1919, 10.1039/C4EE00370E

Wirth, 2012, Appl. Catal., B, 126, 225, 10.1016/j.apcatb.2012.07.023

Michalsky, 2014, ACS Catal., 4, 1274, 10.1021/cs500056u

Ma, 2014, Int. J. Hydrogen Energy, 39, 18803, 10.1016/j.ijhydene.2014.09.062

Wan, 2014, Angew. Chem., 126, 6525, 10.1002/ange.201402998

Wan, 2013, Chem. Commun., 49, 10409, 10.1039/c3cc46551a

Ma, 2014, RSC Adv., 4, 44175, 10.1039/C4RA05673F

Ma, 2014, J. Phys. Chem. C, 118, 9485, 10.1021/jp501021t

Ge, 2014, Electrochim. Acta, 134, 182, 10.1016/j.electacta.2014.04.113

Gao, 2009, Chem. Mater., 21, 5560, 10.1021/cm9014578

Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C

Tang, 2015, J. Power Sources, 296, 18, 10.1016/j.jpowsour.2015.07.016

Wu, 2015, Nat. Commun., 6, 6512, 10.1038/ncomms7512

Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h

Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144

Šljukić, 2015, J. Mater. Chem. A, 3, 15505, 10.1039/C5TA02346G

Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f

Wang, 2015, J. Am. Chem. Soc., 137, 15753, 10.1021/jacs.5b07924

Ma, 2012, J. Am. Chem. Soc., 134, 1954, 10.1021/ja2093053

Xiong, 2015, J. Mater. Chem. A, 3, 1863, 10.1039/C4TA05686H

Wan, 2015, Chem. Mater., 27, 4281, 10.1021/acs.chemmater.5b00621

Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a

Ma, 2007, Int. J. Hydrogen Energy, 32, 2824, 10.1016/j.ijhydene.2006.12.022

Ham, 2008, Int. J. Hydrogen Energy, 33, 6865, 10.1016/j.ijhydene.2008.05.045

Tang, 2015, Int. J. Hydrogen Energy, 40, 3229, 10.1016/j.ijhydene.2014.12.105

Lin, 2015, J. Mater. Chem. A, 3, 14609, 10.1039/C5TA02908B

Fan, 2015, ACS Nano, 9, 5125, 10.1021/acsnano.5b00425

Meng, 2015, J. Mater. Chem. A, 3, 18572, 10.1039/C5TA05589J

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Calandra, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 88, 245428, 10.1103/PhysRevB.88.245428

Putungan, 2015, Phys. Chem. Chem. Phys., 17, 21702, 10.1039/C5CP03799A

Gao, 2015, J. Phys. Chem. C, 119, 13124, 10.1021/acs.jpcc.5b04658

Li, 2016, Nat. Mater., 15, 48, 10.1038/nmat4465

Kumar, 2015, Chem. Commun., 51, 5052, 10.1039/C4CC10311D

Gao, 2015, Nat. Commun., 6, 7493, 10.1038/ncomms8493

Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b

Liu, 2015, J. Power Sources, 275, 588, 10.1016/j.jpowsour.2014.11.039

Cheng, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Ren, 2015, J. Mater. Chem. A, 3, 10693, 10.1039/C5TA02198G

Seo, 2015, ACS Nano, 9, 3728, 10.1021/acsnano.5b00786

You, 2015, Chem. Commun., 51, 4252, 10.1039/C4CC09849H

Huang, 2014, Nanoscale, 6, 10673, 10.1039/C4NR02014F

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Dai, 2015, ACS Appl. Mater. Interfaces, 7, 27242, 10.1021/acsami.5b08420

Bonde, 2009, Faraday Discuss., 140, 219, 10.1039/B803857K

Wang, 2015, J. Am. Chem. Soc., 137, 1587, 10.1021/ja511572q

Long, 2015, J. Am. Chem. Soc., 137, 11900, 10.1021/jacs.5b07728

Ren, 2015, Chem. Commun., 51, 15997, 10.1039/C5CC06847A

Wang, 2015, Nano Energy, 18, 1, 10.1016/j.nanoen.2015.10.001

Xu, 2014, ACS Nano, 8, 8468, 10.1021/nn503027k

Dong, 2015, Sci. Rep., 5, 17542, 10.1038/srep17542

Xu, 2015, Electrochim. Acta, 174, 653, 10.1016/j.electacta.2015.06.040

Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920

Tan, 2014, Adv. Mater., 26, 8023, 10.1002/adma.201403808

Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476

Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982

Wang, 2014, Adv. Mater., 26, 3761, 10.1002/adma.201400265

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Ting, 2016, ACS Catal., 6, 861, 10.1021/acscatal.5b02369

Vrubel, 2013, ACS Catal., 3, 2002, 10.1021/cs400441u

Carim, 2014, J. Mater. Chem. A, 2, 13835, 10.1039/C4TA02611J

Liu, 2005, J. Am. Chem. Soc., 127, 14871, 10.1021/ja0540019

Shia, 2016, Chem. Soc. Rev., 45, 1529, 10.1039/C5CS00434A

Read, 2016, ACS Appl. Mater. Interfaces, 8, 12798, 10.1021/acsami.6b02352

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646

Feng, 2014, Phys. Chem. Chem. Phys., 16, 5917, 10.1039/c4cp00482e

Kucernak, 2014, J. Mater. Chem. A, 2, 17435, 10.1039/C4TA03468F

Laursen, 2015, Energy Environ. Sci., 8, 1027, 10.1039/C4EE02940B

Yang, 2015, Adv. Mater., 27, 3175, 10.1002/adma.201500894

Popczun, 2015, J. Mater. Chem. A, 3, 5420, 10.1039/C4TA06642A

Huang, 2014, Nano Energy, 9, 373, 10.1016/j.nanoen.2014.08.013

Lv, 2016, J. Mater. Chem. A, 4, 1454, 10.1039/C5TA08715E

Liu, 2016, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727

Chang, 2016, Green Chem., 18, 2287, 10.1039/C5GC02899J

Deng, 2016, J. Mater. Chem. A, 4, 59, 10.1039/C5TA05453B

Han, 2015, Adv. Funct. Mater., 25, 3899, 10.1002/adfm.201501390

Feng, 2016, Chem. Commun., 52, 1633, 10.1039/C5CC08991C

Kibsgaard, 2014, Angew. Chem., 126, 14661, 10.1002/ange.201408222

Liu, 2016, Nat. Commun., 7, 10771, 10.1038/ncomms10771

Wang, 2016, Energy Environ. Sci., 9, 1468, 10.1039/C5EE03801D

Pan, 2015, J. Power Sources, 297, 45, 10.1016/j.jpowsour.2015.07.077

Pan, 2016, J. Mater. Chem. A, 4, 4745, 10.1039/C6TA00575F

Janas, 2014, Nanoscale, 6, 3037, 10.1039/c3nr05636h

Huang, 2014, Sci. Rep., 4, 7557, 10.1038/srep07557

Zheng, 2014, ACS Nano, 8, 5290, 10.1021/nn501434a

Cui, 2014, Chem. Commun., 50, 9340, 10.1039/C4CC02713B

Cheng, 2014, Electrochim. Acta, 143, 291, 10.1016/j.electacta.2014.08.001

Liu, 2014, Sci. Rep., 4, 6843, 10.1038/srep06843

Zhang, 2014, RSC Adv., 4, 49161, 10.1039/C4RA08555H

Xie, 2015, J. Mater. Chem. A, 3, 78, 10.1039/C4TA04671D

Dai, 2014, Nat. Commun., 5, 3605, 10.1038/ncomms4605

Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783

Chhetri, 2016, Energy Environ. Sci., 9, 95, 10.1039/C5EE02521D

Wei, 2015, J. Mater. Chem. A, 3, 7210, 10.1039/C5TA00966A

Zhou, 2015, Nano Energy, 16, 357, 10.1016/j.nanoen.2015.07.008

Liu, 2015, J. Mater. Chem. A, 3, 8840, 10.1039/C5TA01209K

Wang, 2015, J. Mater. Chem. A, 3, 19669, 10.1039/C5TA05384F

Trotochaud, 2012, J. Am. Chem. Soc., 134, 17253, 10.1021/ja307507a

Gerken, 2014, Energy Environ. Sci., 7, 2376, 10.1039/C4EE00436A

Yeo, 2011, J. Am. Chem. Soc., 133, 5587, 10.1021/ja200559j

Seitz, 2015, J. Phys. Chem. Lett., 6, 4178, 10.1021/acs.jpclett.5b01928

Gorlin, 2014, J. Am. Chem. Soc., 136, 4920, 10.1021/ja407581w

Wu, 2015, J. Am. Chem. Soc., 137, 7071, 10.1021/jacs.5b04142

Liu, 2014, Electrochim. Acta, 140, 359, 10.1016/j.electacta.2014.04.036

Zhan, 2015, ACS Appl. Mater. Interfaces, 7, 12930, 10.1021/acsami.5b02670

Sayeed, 2016, J. Mater. Chem. A, 4, 991, 10.1039/C5TA09125J

Xing, 2014, J. Mater. Chem. A, 2, 18435, 10.1039/C4TA03776F

Wang, 2015, Catal. Today, 245, 74, 10.1016/j.cattod.2014.06.006

Liu, 2015, Electrochem. Commun., 60, 92, 10.1016/j.elecom.2015.08.011

Chen, 2015, Inorg. Chem. Front., 3, 236, 10.1039/C5QI00197H

Liu, 2015, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727

Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069

Mattioli, 2013, J. Am. Chem. Soc., 135, 15353, 10.1021/ja401797v

Chen, 2015, Phys. Chem. Chem. Phys., 17, 29387, 10.1039/C5CP02876K

Zhang, 2015, Catal. Commun., 67, 78, 10.1016/j.catcom.2015.04.012

Hu, 2008, J. Am. Chem. Soc., 130, 16136, 10.1021/ja806400e

Li, 2015, J. Power Sources, 294, 103, 10.1016/j.jpowsour.2015.06.056

Li, 2015, RSC Adv., 5, 76026, 10.1039/C5RA12822F

Xiao, 2014, Chem. Commun., 50, 10122, 10.1039/C4CC04922E

Nikolov, 1997, J. Electroanal. Chem., 429, 157, 10.1016/S0022-0728(96)05013-9

Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e

Lv, 2015, Dalton Trans., 44, 4148, 10.1039/C4DT03803G

Wu, 2011, J. Mater. Chem., 21, 12344, 10.1039/c1jm11312g

Bikkarolla, 2015, J. Power Sources, 281, 243, 10.1016/j.jpowsour.2015.01.192

Yu, 2015, Chem. Commun., 51, 14361, 10.1039/C5CC05511C

Wang, 2013, Nanoscale, 5, 5312, 10.1039/c3nr00444a

Pletcher, 2016, Electrochim. Acta, 188, 286, 10.1016/j.electacta.2015.10.020

Gu, 2015, RSC Adv., 5, 8882, 10.1039/C4RA13122C

Zhao, 2015, Carbon, 92, 64, 10.1016/j.carbon.2015.03.002

Yang, 2014, ACS Nano, 8, 9518, 10.1021/nn503760c

Li, 2015, Chem. Commun., 51, 15012, 10.1039/C5CC04936A

F. N. Büchi , M.Inaba and T. J.Schmidt, Polymer Electrolyte Fuel Cell Durability, Springer Science and Business Media LLC, New York, 2009

Minguzzi, 2012, Chem. Sci., 3, 217, 10.1039/C1SC00516B

Yan, 2016, Carbon, 99, 195, 10.1016/j.carbon.2015.12.011

Zhang, 2015, J. Power Sources, 278, 464, 10.1016/j.jpowsour.2014.12.092

Han, 2015, Chem. Commun., 51, 11626, 10.1039/C5CC02626A

Zhou, 2013, Energy Environ. Sci., 6, 2921, 10.1039/c3ee41572d

Swesi, 2016, Energy Environ. Sci., 9, 1771, 10.1039/C5EE02463C

Kauffman, 2016, ACS Catal., 6, 1225, 10.1021/acscatal.5b02633

Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105

Yeo, 2012, J. Phys. Chem. C, 116, 8394, 10.1021/jp3007415

Liang, 2015, Chem. Mater., 27, 5702, 10.1021/acs.chemmater.5b02177

Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d

Lu, 2015, Nat. Commun., 6, 6616, 10.1038/ncomms7616

Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s

Li, 2011, Phys. Chem. Chem. Phys., 13, 1162, 10.1039/C0CP00993H

Bates, 2015, ACS Catal., 6, 155, 10.1021/acscatal.5b01481

Chen, 2014, Energy Environ. Sci., 7, 1382, 10.1039/c3ee43811b

Corrigan, 1987, J. Electrochem. Soc., 134, 377, 10.1149/1.2100463

Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c

Fan, 2014, Chem. Soc. Rev., 43, 7040, 10.1039/C4CS00160E

Scavetta, 2002, Electrochim. Acta, 47, 2451, 10.1016/S0013-4686(02)00103-2

Song, 2014, J. Am. Chem. Soc., 136, 16481, 10.1021/ja5096733

Jiang, 2015, J. Power Sources, 278, 445, 10.1016/j.jpowsour.2014.12.085

Li, 2015, Chem. Sci., 6, 6624, 10.1039/C5SC02417J

Song, 2014, Nat. Commun., 5, 4477, 10.1038/ncomms5477

Vlamidis, 2016, Electrochim. Acta, 188, 653, 10.1016/j.electacta.2015.12.059

Lu, 2014, Chem. Commun., 50, 6479, 10.1039/C4CC01625D

Lu, 2016, Chem. Commun., 52, 908, 10.1039/C5CC08845C

Long, 2015, Chem. Commun., 51, 1120, 10.1039/C4CC08856E

Yang, 2014, Nanoscale, 6, 11789, 10.1039/C4NR03371J

Hou, 2016, Energy Environ. Sci., 9, 478, 10.1039/C5EE03440J

Yu, 2015, J. Mater. Chem. A, 3, 6921, 10.1039/C5TA01034A

Tang, 2014, ACS Appl. Mater. Interfaces, 6, 7918, 10.1021/am501256x

Minguzzi, 2012, Chem. Sci., 3, 217, 10.1039/C1SC00516B

McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p

McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p

Neyerlin, 2007, J. Electrochem. Soc., 154, 631, 10.1149/1.2733987