Nanosized n-eicosane as phase change materials: Phase behaviors and phase transition kinetics
Tài liệu tham khảo
Qureshi, 2018, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review, Int. J. Heat Mass Transf., 127, 838, 10.1016/j.ijheatmasstransfer.2018.08.049
Kant, 2017, Advancement in phase change materials for thermal energy storage applications, Sol. Energy Mater. Sol. Cells, 172, 82, 10.1016/j.solmat.2017.07.023
Anghel, 2014, Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage, J. Therm. Anal. Calorim., 117, 557, 10.1007/s10973-014-3775-6
Yang, 2019, Carbon-filled organic phase-change materials for thermal energy storage: a review, Molecules, 24, 2055, 10.3390/molecules24112055
Wu, 2019, Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage, J. Therm. Anal. Calorim., 137, 1225, 10.1007/s10973-019-08041-x
Wu, 2018, Synthesis of a novel three-dimensional Na2SO4@SiO2@Al2O3-SiO2 phase change material doped aerogel composite with high thermal resistance and latent heat, Ceram. Int., 44, 21855, 10.1016/j.ceramint.2018.08.294
Fu, 2019, Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system, Appl. Therm. Eng., 162, 10.1016/j.applthermaleng.2019.114253
Pethurajan, 2018, Facile approach to improve solar thermal energy storage efficiency using encapsulated sugar alcohol based phase change material, Sol. Energy Mater. Sol. Cells, 185, 524, 10.1016/j.solmat.2018.06.007
Mert, 2018, Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage, J. Therm. Anal. Calorim., 136, 1551, 10.1007/s10973-018-7815-5
Soodoo, 2019, Phase behavior of monosulfones: use of high polarity sulfonyl groups to improve the thermal properties of lipid-based materials for PCM applications, Sol. Energy Mater. Sol. Cells, 201, 10.1016/j.solmat.2019.110115
Marks, 1983, The effect of crystal size on the thermal energy storage capacity of thickened Glauber's salt, Sol. Energy, 30, 45, 10.1016/0038-092X(83)90005-1
Xiao, 2019, Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material, Sol. Energy Mater. Sol Cells, 199, 91, 10.1016/j.solmat.2019.04.020
Wang, 2019, Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage, Energy, 167, 269, 10.1016/j.energy.2018.10.164
Galazutdinova, 2018, Preparation and characterization of an inorganic magnesium chloride/nitrate/graphite composite for low temperature energy storage, Sol. Energy Mater. Sol Cells, 175, 60, 10.1016/j.solmat.2017.09.046
Huang, 2019, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J., 356, 641, 10.1016/j.cej.2018.09.013
Seitz, 2019, Self-assembling weak polyelectrolytes for the layer-by-layer encapsulation of paraffin-type phase change material eicosane, Sol. Energy Mater. Sol. Cells, 190, 57, 10.1016/j.solmat.2018.10.012
Horpan, 2019, Direct impregnation and characterization of Colemanite/Ulexite-Mg(OH)2 paraffin based form-stable phase change composites, Sol. Energy Mater. Sol. Cells, 195, 346, 10.1016/j.solmat.2019.03.018
Sarı, 2019, Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell, Sol. Energy Mater. Sol. Cells, 193, 1, 10.1016/j.solmat.2019.01.003
Chen, 2019, Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material, Sol. Energy Mater. Sol. Cells, 200, 10.1016/j.solmat.2019.109989
Rao, 2018, Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization, Sol. Energy Mater. Sol. Cells, 188, 6, 10.1016/j.solmat.2018.08.012
Jiang, 2019, Review on the development of high temperature phase change material composites for solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 203, 10.1016/j.solmat.2019.110164
Wu, 2019, Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability, ACS Sustain. Chem. Eng., 7, 13532, 10.1021/acssuschemeng.9b03169
Gao, 2014, Tuning thermal properties of latent heat storage material through confinement in porous media: the case of (1-CnH2n+1NH3)2ZnCl4 (n = 10 and 12), Sol. Energy Mater. Sol. Cells, 128, 221, 10.1016/j.solmat.2014.05.019
Wang, 2016, Phase transition of neopentyl glycol in nanopores for thermal energy storage, Thermochim. Acta., 632, 10, 10.1016/j.tca.2016.03.016
Tian, 2017, Thermal properties of nano-sized polyethylene glycol confined in silica gels for latent heat storage, Thermochim. Acta, 655, 211, 10.1016/j.tca.2017.05.006
Sun, 2007, The melting behavior of aluminum nanoparticles, Thermochim. Acta, 463, 32, 10.1016/j.tca.2007.07.007
Pallaka, 2018, Melting behavior of n-alkanes in anodic aluminum oxide (AAO) nanopores using Flash differential scanning calorimetry, Thermochim. Acta, 663, 157, 10.1016/j.tca.2018.01.016
Shimizu, 2015, Understanding and analyzing freezing-point transitions of confined fluids within nanopores, Langmuir, 31, 10113, 10.1021/acs.langmuir.5b02149
Jiang, 2014, Crystallization under nanoscale confinement, Chem. Soc. Rev., 43, 2066, 10.1039/C3CS60234F
Chen, 2012, Unravelling the role of the compressed gas on melting point of liquid confined in nanospace, J. Phys. Chem. Lett., 3, 1052, 10.1021/jz300225n
Rengarajan, 2011, Size-dependent growth of polymorphs in nanopores and Ostwald's step rule of stages, Phys. Chem. Chem. Phys., 13, 21367, 10.1039/c1cp22679g
Dosseh, 2003, Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting, J. Phys. Chem. B, 107, 6445, 10.1021/jp034003k
Alcoutlabi, 2005, Effects of confinement on material behaviour at the nanometre size scale, J. Phys. Condens. Matter, 17, R461, 10.1088/0953-8984/17/15/R01
Grigoriadis, 2011, Suppression of phase transitions in a confined rodlike liquid crystal, ACS Nano, 5, 9208, 10.1021/nn203448c
Rengarajan, 2008, Stabilization of the amorphous state of pharmaceuticals in nanopores, J. Mater. Chem., 18, 2537, 10.1039/b804266g
Prado, 2016, Melting of gelatin gels confined to silica nanopores, Phys. Chem. Chem. Phys., 18, 29056, 10.1039/C6CP03339C
Wang, 2019, Phase transition of docosane in nanopores, J. Therm. Anal. Calorim., 135, 2869, 10.1007/s10973-018-7267-y
Deng, 2018, Effect of nanopore confinement on the thermal and structural properties of heneicosane, Thermochim. Acta, 664, 57, 10.1016/j.tca.2018.04.001
Wang, 2020, Phase behaviors of n-octacosane in nanopores: role of pore size and Morphology, Thermochim. Acta, 690, 10.1016/j.tca.2020.178687
Mondieig, 2004, n-Alkane binary molecular alloys, Chem. Mater., 16, 786, 10.1021/cm031169p
Cao, 2009, Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander, Chem. Mater., 21, 1144, 10.1021/cm8012733
Rajabalee, 1999, New insights on the crystalline forms in binary systems of n-alkanes: characterization of the solid ordered phases in the phase diagram tricosane + pentacosane, J. Mater. Res., 14, 2644, 10.1557/JMR.1999.0354
Schwind, 2010, LSPR study of the kinetics of the liquid−solid phase transition in Sn nanoparticles, Nano Lett., 10, 931, 10.1021/nl100044k