Nanosized n-eicosane as phase change materials: Phase behaviors and phase transition kinetics

Chemical Thermodynamics and Thermal Analysis - Tập 3 - Trang 100019 - 2021
Dongqing Wang1, Yantao Dong1, Wenjing Sun1, Nan Lu1, Xiaozheng Lan1
1College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China

Tài liệu tham khảo

Qureshi, 2018, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review, Int. J. Heat Mass Transf., 127, 838, 10.1016/j.ijheatmasstransfer.2018.08.049 Kant, 2017, Advancement in phase change materials for thermal energy storage applications, Sol. Energy Mater. Sol. Cells, 172, 82, 10.1016/j.solmat.2017.07.023 Anghel, 2014, Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage, J. Therm. Anal. Calorim., 117, 557, 10.1007/s10973-014-3775-6 Yang, 2019, Carbon-filled organic phase-change materials for thermal energy storage: a review, Molecules, 24, 2055, 10.3390/molecules24112055 Wu, 2019, Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage, J. Therm. Anal. Calorim., 137, 1225, 10.1007/s10973-019-08041-x Wu, 2018, Synthesis of a novel three-dimensional Na2SO4@SiO2@Al2O3-SiO2 phase change material doped aerogel composite with high thermal resistance and latent heat, Ceram. Int., 44, 21855, 10.1016/j.ceramint.2018.08.294 Fu, 2019, Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system, Appl. Therm. Eng., 162, 10.1016/j.applthermaleng.2019.114253 Pethurajan, 2018, Facile approach to improve solar thermal energy storage efficiency using encapsulated sugar alcohol based phase change material, Sol. Energy Mater. Sol. Cells, 185, 524, 10.1016/j.solmat.2018.06.007 Mert, 2018, Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage, J. Therm. Anal. Calorim., 136, 1551, 10.1007/s10973-018-7815-5 Soodoo, 2019, Phase behavior of monosulfones: use of high polarity sulfonyl groups to improve the thermal properties of lipid-based materials for PCM applications, Sol. Energy Mater. Sol. Cells, 201, 10.1016/j.solmat.2019.110115 Marks, 1983, The effect of crystal size on the thermal energy storage capacity of thickened Glauber's salt, Sol. Energy, 30, 45, 10.1016/0038-092X(83)90005-1 Xiao, 2019, Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material, Sol. Energy Mater. Sol Cells, 199, 91, 10.1016/j.solmat.2019.04.020 Wang, 2019, Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage, Energy, 167, 269, 10.1016/j.energy.2018.10.164 Galazutdinova, 2018, Preparation and characterization of an inorganic magnesium chloride/nitrate/graphite composite for low temperature energy storage, Sol. Energy Mater. Sol Cells, 175, 60, 10.1016/j.solmat.2017.09.046 Huang, 2019, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J., 356, 641, 10.1016/j.cej.2018.09.013 Seitz, 2019, Self-assembling weak polyelectrolytes for the layer-by-layer encapsulation of paraffin-type phase change material eicosane, Sol. Energy Mater. Sol. Cells, 190, 57, 10.1016/j.solmat.2018.10.012 Horpan, 2019, Direct impregnation and characterization of Colemanite/Ulexite-Mg(OH)2 paraffin based form-stable phase change composites, Sol. Energy Mater. Sol. Cells, 195, 346, 10.1016/j.solmat.2019.03.018 Sarı, 2019, Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell, Sol. Energy Mater. Sol. Cells, 193, 1, 10.1016/j.solmat.2019.01.003 Chen, 2019, Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material, Sol. Energy Mater. Sol. Cells, 200, 10.1016/j.solmat.2019.109989 Rao, 2018, Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization, Sol. Energy Mater. Sol. Cells, 188, 6, 10.1016/j.solmat.2018.08.012 Jiang, 2019, Review on the development of high temperature phase change material composites for solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 203, 10.1016/j.solmat.2019.110164 Wu, 2019, Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability, ACS Sustain. Chem. Eng., 7, 13532, 10.1021/acssuschemeng.9b03169 Gao, 2014, Tuning thermal properties of latent heat storage material through confinement in porous media: the case of (1-CnH2n+1NH3)2ZnCl4 (n = 10 and 12), Sol. Energy Mater. Sol. Cells, 128, 221, 10.1016/j.solmat.2014.05.019 Wang, 2016, Phase transition of neopentyl glycol in nanopores for thermal energy storage, Thermochim. Acta., 632, 10, 10.1016/j.tca.2016.03.016 Tian, 2017, Thermal properties of nano-sized polyethylene glycol confined in silica gels for latent heat storage, Thermochim. Acta, 655, 211, 10.1016/j.tca.2017.05.006 Sun, 2007, The melting behavior of aluminum nanoparticles, Thermochim. Acta, 463, 32, 10.1016/j.tca.2007.07.007 Pallaka, 2018, Melting behavior of n-alkanes in anodic aluminum oxide (AAO) nanopores using Flash differential scanning calorimetry, Thermochim. Acta, 663, 157, 10.1016/j.tca.2018.01.016 Shimizu, 2015, Understanding and analyzing freezing-point transitions of confined fluids within nanopores, Langmuir, 31, 10113, 10.1021/acs.langmuir.5b02149 Jiang, 2014, Crystallization under nanoscale confinement, Chem. Soc. Rev., 43, 2066, 10.1039/C3CS60234F Chen, 2012, Unravelling the role of the compressed gas on melting point of liquid confined in nanospace, J. Phys. Chem. Lett., 3, 1052, 10.1021/jz300225n Rengarajan, 2011, Size-dependent growth of polymorphs in nanopores and Ostwald's step rule of stages, Phys. Chem. Chem. Phys., 13, 21367, 10.1039/c1cp22679g Dosseh, 2003, Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting, J. Phys. Chem. B, 107, 6445, 10.1021/jp034003k Alcoutlabi, 2005, Effects of confinement on material behaviour at the nanometre size scale, J. Phys. Condens. Matter, 17, R461, 10.1088/0953-8984/17/15/R01 Grigoriadis, 2011, Suppression of phase transitions in a confined rodlike liquid crystal, ACS Nano, 5, 9208, 10.1021/nn203448c Rengarajan, 2008, Stabilization of the amorphous state of pharmaceuticals in nanopores, J. Mater. Chem., 18, 2537, 10.1039/b804266g Prado, 2016, Melting of gelatin gels confined to silica nanopores, Phys. Chem. Chem. Phys., 18, 29056, 10.1039/C6CP03339C Wang, 2019, Phase transition of docosane in nanopores, J. Therm. Anal. Calorim., 135, 2869, 10.1007/s10973-018-7267-y Deng, 2018, Effect of nanopore confinement on the thermal and structural properties of heneicosane, Thermochim. Acta, 664, 57, 10.1016/j.tca.2018.04.001 Wang, 2020, Phase behaviors of n-octacosane in nanopores: role of pore size and Morphology, Thermochim. Acta, 690, 10.1016/j.tca.2020.178687 Mondieig, 2004, n-Alkane binary molecular alloys, Chem. Mater., 16, 786, 10.1021/cm031169p Cao, 2009, Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander, Chem. Mater., 21, 1144, 10.1021/cm8012733 Rajabalee, 1999, New insights on the crystalline forms in binary systems of n-alkanes: characterization of the solid ordered phases in the phase diagram tricosane + pentacosane, J. Mater. Res., 14, 2644, 10.1557/JMR.1999.0354 Schwind, 2010, LSPR study of the kinetics of the liquid−solid phase transition in Sn nanoparticles, Nano Lett., 10, 931, 10.1021/nl100044k