Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes

Andrey Massarsky1, Ren Abraham1, Kathy C. Nguyen2, Peter Rippstein3, Azam F. Tayabali2, Vance L. Trudeau1, Thomas W. Moon1
1Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
2Biotechnology Lab, Mechanistic Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
3The Heart Institute, University of Ottawa, Ottawa, Ontario, Canada

Tài liệu tham khảo

Ahamed, 2011, Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles, Phys. E., 43, 1266, 10.1016/j.physe.2011.02.014 Aillon, 2009, Effects of nanomaterial physicochemical properties on in vivo toxicity, Adv. Drug Deliv. Rev., 61, 457, 10.1016/j.addr.2009.03.010 Baldi, 1988, Effects of silver in isolated rat hepatocytes, Toxicol. Lett., 41, 261, 10.1016/0378-4274(88)90063-X Benn, 2008, Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol., 42, 4133, 10.1021/es7032718 Blaser, 2008, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ., 390, 396, 10.1016/j.scitotenv.2007.10.010 Carlson, 2008, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem., 112, 13608, 10.1021/jp712087m Castano, 2003, The use of fish cells in ecotoxicology — the report and recommendation of ECVAM Workshop 47, Altern. Lab. Anim., 31, 317, 10.1177/026119290303100314 Chernousova, 2013, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923 Coradeghini, 2013, Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts, Toxicol. Lett., 217, 205, 10.1016/j.toxlet.2012.11.022 Craig, 2013, Understanding glucose uptake during methionine deprivation in incubated rainbow trout (Oncorhynchus mykiss) hepatocytes using a non-radioactive method, Comp. Biochem. Physiol. C, 166, 23, 10.1016/j.cbpb.2013.06.005 Deneke, 1989, Regulation of cellular glutathione, Am. J. Physiol., 257, L163 Farkas, 2010, Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes, Aquat. Toxicol., 96, 44, 10.1016/j.aquatox.2009.09.016 Farkas, 2011, Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells, Aquat. Toxicol., 101, 117, 10.1016/j.aquatox.2010.09.010 Feng, 2003, Copper impact on heat shock protein 70 expression and apoptosis in rainbow trout hepatocytes, Comp. Biochem. Physiol. C, 135, 345 Fong, 2006, Nanocrystaline silver dressings in wound management: a review, Int. J. Nanomedicine, 1, 441, 10.2147/nano.2006.1.4.441 Gagné, 1995, Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes, Environ. Toxicol. Water Qual., 10, 217, 10.1002/tox.2530100309 Gagné, 2011, Alterations in DNA metabolism in Elliptio complanata mussels after exposure to municipal effluents, Comp. Biochem. Physiol. C, 154, 100 Gagné, 2012, Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach, Chemosphere, 89, 615, 10.1016/j.chemosphere.2012.05.063 Geranio, 2009, The behavior of silver nanotextiles during washing, Environ. Sci. Technol., 43, 8113, 10.1021/es9018332 Gottschalk, 2009, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43, 9216, 10.1021/es9015553 Grade, 2012, Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles, RSC Adv., 2, 7190, 10.1039/c2ra20546g Guillouzo, 1998, Liver cell models in in vitro toxicology, Environ. Health Perspect., 106, 511, 10.1289/ehp.98106511 Hajizadeh, 2012, Silver nanoparticles in the presence of Ca2+ as a selective and sensitive probe for the colorimetric detection of cysteine, Anal. Methods, 4, 1747, 10.1039/c2ay05848k Handy, 2008, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology, 17, 287, 10.1007/s10646-008-0199-8 Hermes-Lima, 1996, Relationship between anoxia exposure and antioxidant status in the frog Rana pipiens, Am. J. Physiol., 217, 918 Hermes-Lima, 1995, Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation, Free Radic. Biol. Med., 19, 271, 10.1016/0891-5849(95)00020-X Hollinger, 1996, Toxicological aspects of topical silver pharmaceuticals, Crit. Rev. Toxicol., 26, 255, 10.3109/10408449609012524 Hultberg, 2001, Interaction of metals and thiols in cell damage and glutathione distribution: potentiation of mercury toxicity by dithiothreitol, Toxicology, 156, 93, 10.1016/S0300-483X(00)00331-0 Kaegi, 2011, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol., 45, 3902, 10.1021/es1041892 Keppler, 1999, Export pumps for glutathione S-conjugates, Free Radic. Biol. Med., 27, 985, 10.1016/S0891-5849(99)00171-9 Khan, 2011, The protective role of glutathione in silver induced toxicity in blood components, Pak. J. Pharm. Sci., 24, 123 Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnol., 3, 95, 10.1016/j.nano.2006.12.001 Kramer, 2009, Silver nanoparticle toxicity and biocides: need for chemical speciation, Integr. Environ. Assess. Manag., 5, 720, 10.1897/IEAM_2009-066.1 Li, 2013, Oxidative stress parameters and anti-apoptotic response to hydroxyl radicals in fish erythrocytes: protective effects of glutamine, alanine, citrulline and proline, Aquat. Toxicol., 126, 169, 10.1016/j.aquatox.2012.11.005 Limbach, 2007, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress, Environ. Sci. Technol., 41, 4158, 10.1021/es062629t Liu, 1981, Preparation and analytical properties of a chelating resin containing cysteine groups, Anal. Chim. Acta., 132, 187, 10.1016/S0003-2670(01)93889-9 Liu, 2010, Impact of silver nanoparticles on human cells: effect of particle size, Nanotoxicology, 4, 319, 10.3109/17435390.2010.483745 Lowry, 2012, Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland, Environ. Sci. Technol., 46, 7027, 10.1021/es204608d Lushchak, 2001, Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, R100, 10.1152/ajpregu.2001.280.1.R100 Lynch, 2007, Assessing the pulmonary toxicity of single-walled carbon nanohorns, Nanotoxicology, 1, 157, 10.1080/17435390701598496 MacCormack, 2012, Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing, Nanotoxicology, 6, 514, 10.3109/17435390.2011.587904 Mannervik, 1987, The enzymes of glutathione metabolism: an overview, Biochem. Soc. Trans., 15, 717, 10.1042/bst0150717 Massarsky, 2013, Assessment of nanosilver toxicity during zebrafish (Danio rerio) development, Chemosphere, 92, 59, 10.1016/j.chemosphere.2013.02.060 Mireles, 1999, Antioxidant and cytotoxic effects of bilirubin on neonatal erythrocytes, Pediatr. Res., 45, 355, 10.1203/00006450-199903000-00011 Misra, 2012, Induction of oxidative stress by selenomethionine in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss), Toxicol. in Vitro, 26, 621, 10.1016/j.tiv.2012.02.001 Mommsen, 1994, Hepatocytes: isolation, maintenance and utilization, Vol. 3, 355 Monteiro-Riviere, 2013, Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations?, Toxicol. Lett., 220, 286, 10.1016/j.toxlet.2013.04.022 Morgan, 2004, A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: support for the acute silver biotic ligand model, Environ. Toxicol. Chem., 23, 1261, 10.1897/03-181 Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059 Mukherjee, 2012, Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines, Toxicol. in Vitro, 26, 238, 10.1016/j.tiv.2011.12.004 Nanotechproject Nguyen, 2013, Comparison of toxicity of uncoated and coated silver nanoparticles, J. Phys. Conf. Ser., 429, 10.1088/1742-6596/429/1/012025 Oberdörster, 2005, An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339 Oberdörster, 2007, Toxicology of nanoparticles: a historical perspective, Nanotoxicology, 1, 2, 10.1080/17435390701314761 Olive, 1988, DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells, Environ. Mol. Mutagen., 11, 487, 10.1002/em.2850110409 Otto, 1996, Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age, Fish Physiol. Biochem., 15, 349, 10.1007/BF02112362 Park, 2009, Silver-ion-mediated reactive oxygen species generation affecting bacterial activity, Water Res., 43, 1027, 10.1016/j.watres.2008.12.002 Piao, 2011, Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondrial-involved apoptosis, Toxicol. Lett., 201, 92, 10.1016/j.toxlet.2010.12.010 Prencipe, 2009, PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation, J. Am. Chem. Soc., 131, 4783, 10.1021/ja809086q Rayburn, 2010, l-cysteine, N-acetyl-l-cysteine, and glutathione protect Xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay, J. Agric. Food Chem., 58, 11172, 10.1021/jf1023998 Reddy, 2007, In vitro models of oxidative stress in rat erythrocytes: effect of antioxidant supplements, Toxicol. in Vitro, 21, 1355, 10.1016/j.tiv.2007.06.010 Schultz, 2012, Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol., 46, 10295, 10.1021/es3017717 Scown, 2010, Review: do engineered nanoparticles pose a significant threat to the aquatic environment?, Crit. Rev. Toxicol., 40, 653, 10.3109/10408444.2010.494174 Singh, 2012, Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles, Toxicol. Lett., 213, 249, 10.1016/j.toxlet.2012.07.009 Song, 2012, Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells, Cell Biol. Toxicol., 28, 225, 10.1007/s10565-012-9218-x Sopjani, 2009, Silver ion-induced suicidal erythrocyte death, J. Appl. Toxicol., 29, 531, 10.1002/jat.1438 Thomas, 2008, Size-dependent surface plasmon resonance in silver silica nanocomposites, Nanotechnology, 19, 1, 10.1088/0957-4484/19/7/075710 Toborek, 1995, Role of glutathione redox cycle in TNF-a-mediated endothelial cell dysfunction, Atherosclerosis, 117, 179, 10.1016/0021-9150(95)05568-H Trenzado, 2009, Blood antioxidant defenses and hematological adjustments in crowded/uncrowded rainbow trout (Oncorhynchus mykiss) fed on diets with different levels of antioxidant vitamins and HUFA, Comp. Biochem. Physiol. C, 149, 440 Tuncer, 2010, The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen, Cryobiology, 61, 303, 10.1016/j.cryobiol.2010.09.009 Wood, 1999, Physiology and modelling of mechanisms of silver uptake and toxicity in fish, Environ. Toxicol. Chem., 18, 71, 10.1002/etc.5620180110 Yu, 2013, Silver nanoparticles in the environment, Environ. Sci., 15, 78