Nanosilver: An innovative paradigm to promote its safe and active use

NanoImpact - Tập 11 - Trang 128-135 - 2018
D. Gardini1, M. Blosi1, S. Ortelli1, C. Delpivo1, O. Bussolati1,2, M.G. Bianchi2, M. Allegri2, E. Bergamaschi1,3, A.L. Costa1
1National Research Council of Italy (CNR) - Institute of Science and Technology for Ceramics (ISTEC), Via Granarolo 64, I-48018 Faenza, Italy
2Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, I-43125 Parma, Italy
3Department of Public Health and Pediatrics Public Health, Toxicology, University of Torino, P.zza Polonia, 94, 10126 Torino, Italy

Tài liệu tham khảo

Arts, 2016, Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice, Regul. Toxicol. Pharmacol., 76, 234, 10.1016/j.yrtph.2015.11.020 Behra, 2013, Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective, J. R. Soc. Interface, 10, 1, 10.1098/rsif.2013.0396 Bermejo-Nogales, 2016, Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1), Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 190, 54 Borm, 2006, The potential risks of nanomaterials: a review carried out for ECETOC, Part. Fibre Toxicol., 3, 11, 10.1186/1743-8977-3-11 Casals, 2010, Time evolution of the nanoparticle protein corona, ACS Nano, 4, 3623, 10.1021/nn901372t Gliga, 2014, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release, Part. Fibre Toxicol., 11, 11, 10.1186/1743-8977-11-11 Gunawan, 2009, Reversible antimicrobial photoswitching in nanosilver, Small, 5, 341, 10.1002/smll.200801202 http://google.com/patents/WO2010100107A2, n.d. Process for preparing stable suspensions of metal nanoparticles and the stable colloidal suspensions obtained thereby. Huk, 2014, Is the toxic potential of nanosilver dependent on its size?, Part. Fibre Toxicol., 11 Ivask, 2012, Metal-containing nano-antimicrobials: differentiating the impact of solubilized metals and particles, 253 Ivask, 2014, Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver, ACS Nano, 8, 374, 10.1021/nn4044047 Ivask, 2014, Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro, PLoS One, 9, 10.1371/journal.pone.0102108 Jemec, 2016, An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data, Environ. Int., 87, 20, 10.1016/j.envint.2015.10.014 Jin, 2010, High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions, Environ. Sci. Technol., 44, 7321, 10.1021/es100854g Lara, 2011, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotechnol., 1 Liu, 2010, Controlled release of biologically active silver from nanosilver surfaces, ACS Nano, 4, 6903, 10.1021/nn102272n Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 916, 10.1021/pr0504079 Lubick, 2008, Nanosilver toxicity: ions, nanoparticles or both?, Environ. Sci. Technol., 42, 8617, 10.1021/es8026314 Lynch, 2008, Protein-nanoparticle interactions, Nano Today, 3, 40, 10.1016/S1748-0132(08)70014-8 Ma, 2012, Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol., 46, 752, 10.1021/es201686j Marambio-Jones, 2010, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res., 12, 1531, 10.1007/s11051-010-9900-y McQuillan, 2012, Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12, Nanotoxicology, 6, 857, 10.3109/17435390.2011.626532 McShan, 2014, Molecular toxicity mechanism of nanosilver, J. Food Drug Anal., 22, 116, 10.1016/j.jfda.2014.01.010 Misra, 2012, The complexity of nanoparticle dissolution and its importance in nanotoxicological studies, Sci. Total Environ., 438, 225, 10.1016/j.scitotenv.2012.08.066 Navarro, 2008, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol., 42, 8959, 10.1021/es801785m Navarro, 2015, Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii, Environ. Sci. Technol., 49, 8041, 10.1021/acs.est.5b01089 Nowack, 2011, 120 years of nanosilver history: implications for policy makers, Environ. Sci. Technol., 45, 1177, 10.1021/es103316q Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06 Reidy, 2013, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications, Materials, 6, 2295, 10.3390/ma6062295 Seltenrich, 2013, Nanosilver: weighing the risks and benefits, Environ. Health Perspect., 121, a220, 10.1289/ehp.121-a220 Wijnhoven, 2009, Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology, 3, 109, 10.1080/17435390902725914 Woodrow Wilson International Center for Scholars, 2013 Xiu, 2012, Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12, 4271, 10.1021/nl301934w