Cảm biến chỉ số khúc xạ quy mô nano dựa trên sóng dẫn MIM kết hợp với bộ cộng hưởng hình chữ U có ba nhánh để phát hiện nồng độ dung dịch cồn

Yuhao Cao1, Shubin Yan2, Feng Liu1, Jianfei Wang1, Shuwen Chang1, Guang Liu2, Wei Zhang2, Tong Wu2, Yifeng Ren1
1School of Electrical and Control Engineering, North University of China, 030051, Taiyuan, China
2School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, 310018, Hangzhou, China

Tóm tắt

Tóm tắt

Trong bài báo này, một cảm biến chỉ số khúc xạ nano bao gồm một sóng dẫn kim loại - cách điện - kim loại (MIM) và một bộ cộng hưởng hình chữ U với ba nhánh (URRS) được đề xuất. Hiệu suất truyền dẫn của cảm biến đã được phân tích lý thuyết bằng phương pháp phần tử hữu hạn (FEM). Các ảnh hưởng của chỉ số khúc xạ và các tham số hình học cấu trúc khác nhau đến hiệu suất cảm biến đã được đánh giá. Độ nhạy tối ưu của cấu trúc cảm biến chỉ số khúc xạ được thiết kế đạt 2900 nm/RIU, và chỉ số hiệu suất (FOM) là 55.76. Cảm biến được đề xuất cho thấy tiềm năng hứa hẹn trong việc ứng dụng vào nghiên cứu phát hiện nồng độ dung dịch cồn. Ngoài ra, chúng tôi đã áp dụng cấu trúc cảm biến này vào lĩnh vực phát hiện nồng độ dung dịch cồn và kết quả thử nghiệm cho thấy tốt với độ nhạy lên đến 112.

Từ khóa


Tài liệu tham khảo

Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Wu P (2022) Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 24(15):8846–8853

Meng C, Lu F, Zhang W, Wang J, Mao D, Gao F, Zhao J (2020) Selective remote-excitation of gap mode in metallic nanowire-nanoparticle system using chiral surface plasmon polaritons. IEEE J Quantum Electron 56(6):1–6

Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P (2004) Nanoribbon waveguides for subwavelength photonics integration. Science 305(5688):1269–1273

Krešić I, Kruljac M, Ban T, Aumiler D (2019) Electromagnetically induced transparency with a single frequency comb mode probe. JOSA B 36(7):1758–1764

Li W, Su Y, Zhai X, Shang X, Xia S, Wang L (2018) High-Q multiple fano resonances sensor in single dark mode metamaterial waveguide structure. IEEE Photonics Technol Lett 30(23):2068–2071

Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102–107102

Chen J, Li Z, Li J, Gong Q (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19(10):9976–9985

Kong D, Tsubokawa M (2015) Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides. Opt Express 23(15):19082–19091

Nishijima Y, Rosa L, Juodkazis S (2012) Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt Express 20(10):11466–11477

Horvath C, Bachman D, Wu M, Perron D, Van V (2011) Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technol Lett 23(17):1267–1269

Chen Y, Xu Y, Cao J (2019) Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results in physics 14:102420

Wang S, Li Y, Xu Q, Li S (2016) A MIM filter based on a side-coupled crossbeam square-ring resonator. Plasmonics 11:1291–1296

Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Wu P (2021) A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys Chem Chem Phys 23(47):26864–26873

Zhou C, Huo Y, Guo Y, Niu Q (2021) Tunable multiple fano resonances and stable plasmonic band-stop filter based on a metal-insulator-metal waveguide. Plasmonics 16(5):1735–1743

Zhang Y, Cui M (2019) Refractive index sensor based on the symmetric MIM waveguide structure. J Electron Mater 48:1005–1010

Hwang Y, Kim JE, Park HY (2011) Frequency selective metal-insulator-metal splitters for surface plasmons. Optics Communications 284(19):4778–4781

Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

Yi X, Tian J, Yang R (2018) Tunable Fano resonance in plasmonic MDM waveguide with a square type split-ring resonator. Optik 171:139–148

Ren X, Ren K, Cai Y (2017) Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl Opt 56(31):H1–H9

Hu F, Chen F, Zhang H, Sun L, Yu C (2021) Sensor based on multiple Fano resonances in MIM waveguide resonator system with silver nanorod-defect. Optik 229:166237

Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43(4):1230–1247

Xie Y, Huang Y, Xu W, Zhao W, He C (2016) A plasmonic temperature-sensing structure based on dual laterally side-coupled hexagonal cavities. Sensors 16(5):706

Yang X, Hua E, Su H, Guo J, Yan S (2020) A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20(15):4125

Tathfif I, Hassan MF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Optics Communications 519:128429

Tathfif I, Rashid KS, Yaseer AA, Sagor RH (2021) Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795

Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29(20):32365–32376

Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29(23):37541–37554

Rashid KS, Hassan MF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440

Hassan M F, Tathfif I, Radoan M, Sagor R H (2020) A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capability. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 91–96). IEEE.

Hassan MF, Sagor RH, Tathfif I, Rashid KS, Radoan M (2020) An optimized dielectric-metal-dielectric refractive index nanosensor. IEEE Sens J 21(2):1461–1469

He YJ, Hung WC, Lai ZP (2016) Using finite element and eigenmode expansion methods to investigate the periodic and spectral characteristic of superstructure fiber Bragg gratings. Sensors 16(2):192

Ren W, Wang F, Ren G (2022) Mode coupling analysis for a mode selective coupler using the supermode theory. In Photonics (Vol. 9, No. 2, p. 63)

Kekatpure RD, Hryciw AC, Barnard ES, Brongersma ML (2009) Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt Express 17(26):24112–24129

Li S, Wang Y, Jiao R, Wang L, Duan G, Yu L (2017) Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt Express 25(4):3525–3533

Qiao L, Zhang G, Wang Z, Fan G, Yan Y (2019) Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Optics communications 433:144–149

Zhu J, Li N (2020) MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Opt Express 28(14):19978–19987

Xu W, Chen L, Zhu F, Liu J, Sui C, Hong Z (2020) Double Fano resonances in S-shaped plasmonic metasurfaces in terahertz region. Frontiers in Physics 8:256

Diao J, Han B, Yin J, Li X, Lang T, Hong Z (2019) Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface. IEEE Photonics J 11(3):1–10

Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–12

Zhang Y, Kuang Y, Zhang Z, Tang Y, Han J, Wang R, Liu W (2019) High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl Phys A 125:1–5

Butt MA, Kazanskiy NL, Khonina SN (2020) Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic sensors 10:223–232

Nejat M, Nozhat N (2020) Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region. Sci Rep 10(1):6357