Nanorobots: An innovative approach for DNA-based cancer treatment

Journal of Drug Delivery Science and Technology - Tập 80 - Trang 104173 - 2023
Ghulam Muhayyudin Chattha1, Shumaila Arshad2, Yousaf Kamal3, Muhammad Awais Chattha4, Mulazim Hussain Asim1, Syed Atif Raza5, Arshad Mahmood6,7, Mobina Manzoor8, Umair Ikram Dar9, Amina Arshad10
1College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
2Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, 40100, Sargodha, Pakistan
3Faculty of Pharmacy, Hamdard University Karachi, Islamabad Campus, 45550, Islamabad, Pakistan
4Department of Physics, University of Sialkot, 51300, Sialkot, Pakistan
5Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
6College of Pharmacy, Al Ain University, Abu Dhabi Campus, 64141, Abu Dhabi, United Arab Emirates
7AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, 51133, United Arab Emirates
8Institute of Pharmacy, Lahore College for Women University, 54000, Lahore, Pakistan
9Lahore College of Pharmaceutical Sciences, 18-Km raiwind road, 54000, Lahore, Pakistan
10Rashid Latif College of Pharmacy, 35- KM Ferozepur Road, 54000, Lahore, Pakistan

Tài liệu tham khảo

Thun, 2010, The global burden of cancer: priorities for prevention, Carcinogenesis, 31, 100, 10.1093/carcin/bgp263 Bray, 2006, Predicting the future burden of cancer, Nat. Rev. Cancer, 6, 63, 10.1038/nrc1781 Blackadar, 2016, Historical review of the causes of cancer, World J. Clin. Oncol., 7, 54, 10.5306/wjco.v7.i1.54 GIZMODO Institute Liu, 2017, Aptamer selection and applications for breast cancer diagnostics and therapy, J. Nanobiotechnol., 15, 1, 10.1186/s12951-017-0311-4 Chen, 2018, DNA nanotechnology for cancer diagnosis and therapy, Int. J. Mol. Sci., 19, 1671, 10.3390/ijms19061671 Aeran, 2015, Nanodentistry: is just a fiction or future, J. Oral Biology and Craniofacial Res., 5, 207, 10.1016/j.jobcr.2015.06.012 Kumar, 2018, Nanorobots a future device for diagnosis and treatment, J. Pharm. Pharmacol., 5, 44 Neto, 2010, A review on nanorobotics, J. Comput. Theor. Nanosci., 7, 1870, 10.1166/jctn.2010.1552 Sivasankar, 2012, Brief review on nano robots in bio medical applications, Adv. Robot. Autom., 1, 2 Manjunath, 2014, The promising future in medicine: nanorobots, Biomed. Sci. Eng., 2, 42 Jeong, 2022, Stimuli-responsive adaptive nanotoxin to directly penetrate the cellular membrane by molecular folding and unfolding, J. Am. Chem. Soc., 144, 5503, 10.1021/jacs.2c00084 Desrosiers, 2022, Programmable self-regulated molecular buffers for precise sustained drug delivery, Nat. Commun., 13, 1, 10.1038/s41467-022-33491-7 Harroun, 2018, Programmable DNA switches and their applications, Nanoscale, 10, 4607, 10.1039/C7NR07348H Lenaghan, 2013, Grand challenges in bioengineered nanorobotics for cancer therapy, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng., 60, 667 Paul, 2018, A brief insight into nanorobotics, 23 Ricotti, 2015, Advanced micro-nano-bio systems for future targeted therapies, Curr. Nanosci., 11, 144, 10.2174/1573413710666141114221246 Giri, 2021, A brief review on challenges in design and development of nanorobots for medical applications, Appl. Sci., 11, 10.3390/app112110385 García-López, 2017, Molecular machines open cell membranes, Nature, 548, 567, 10.1038/nature23657 Korn Bourzac, 2012, Nanotechnology: carrying drugs, Nature, 491, S58, 10.1038/491S58a Daphne American clnMichelle Gmeiner, 2014, Nanotechnology for cancer treatment, Nanotechnol. Rev., 3, 111, 10.1515/ntrev-2013-0013 Golan, 2011 Rang, 2011 Nishioka, 2006, ANVISA and clinical research in Brazil, Rev. Assoc. Méd. Bras., 52, 60, 10.1590/S0104-42302006000100025 Kratz, 2012, Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems, J. Contr. Release, 164, 221, 10.1016/j.jconrel.2012.05.045 Zeeshan, 2013, Graphite coating of iron nanowires for nanorobotic applications: synthesis, characterization and magnetic wireless manipulation, Adv. Funct. Mater., 23, 823, 10.1002/adfm.201202046 Kojima, 2013, Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems, Acta Biomater., 9, 5673, 10.1016/j.actbio.2012.11.013 Scialabba, 2014, Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy, Eur. J. Pharm. Biopharm., 88, 695, 10.1016/j.ejpb.2014.09.008 Watanabe, 2013, Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells, Int. J. Pharm., 446, 81, 10.1016/j.ijpharm.2013.02.002 Liu, 2011, Carbon materials for drug delivery & cancer therapy, Mater. Today, 14, 316, 10.1016/S1369-7021(11)70161-4 Zhao, 2013, Molecular targeting of liposomal nanoparticles to tumor microenvironment, Int. J. Nanomed., 8, 61 Coates, 1983, On the receiving end—patient perception of the side-effects of cancer chemotherapy, Eur. J. Cancer Clin. Oncol., 19, 203, 10.1016/0277-5379(83)90418-2 Tannock, 2002, Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy, Clin. Cancer Res., 8, 878 Mousa, 2011, Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications, Cancers, 3, 2888, 10.3390/cancers3032888 Sutradhar, 2014, Nanotechnology in cancer drug delivery and selective targeting, Int. Sch. Res. Notices, 939378 Brown, 1999, Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs, Expet Rev. Mol. Med., 1, 1, 10.1017/S1462399499001099X Bae, 2011, Targeted drug delivery to tumors: myths, reality and possibility, J. Contr. Release, 153, 198, 10.1016/j.jconrel.2011.06.001 Gillies, 2005, Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today, 10, 35, 10.1016/S1359-6446(04)03276-3 Surekha, 2021, PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy, Colloids Surf. B Biointerfaces, 204, 10.1016/j.colsurfb.2021.111837 Slowing, 2008, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278, 10.1016/j.addr.2008.03.012 Khairnar, 2022, Nanocrystals: an approachable delivery system for anticancer therapeutics, Curr. Drug Metabol., 23, 603, 10.2174/1389200223666220610165850 Torchilin, 2005, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145, 10.1038/nrd1632 Yang, 2015, Gold nanomaterials at work in biomedicine, Chem. Rev., 115, 10410, 10.1021/acs.chemrev.5b00193 Lee, 2012, Polymersomes for drug delivery: design, formation and characterization, J. Contr. Release, 161, 473, 10.1016/j.jconrel.2011.10.005 Arruebo, 2007, Magnetic nanoparticles for drug delivery, Nano Today, 2, 22, 10.1016/S1748-0132(07)70084-1 Singh, 2021, Nanocarrier mediated autophagy: an emerging trend for cancer therapy, Process Biochem., 109, 198, 10.1016/j.procbio.2021.07.011 Boisseau, 2011, Nanomedicine, nanotechnology in medicine, Compt. Rendus Phys., 12, 620, 10.1016/j.crhy.2011.06.001 Laurent, 2008, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108, 2064, 10.1021/cr068445e Shin, 2016, Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries, Sci. Rep., 6, 1, 10.1038/srep26332 Prokop, 2008, Nanovehicular intracellular delivery systems, J. Pharmaceut. Sci., 97, 3518, 10.1002/jps.21270 Yang, 2014, Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation, Mol. Pharm., 11, 1250, 10.1021/mp400703d Taiarol, 2020, An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy, Nanomedicine, 15, 1861, 10.2217/nnm-2020-0132 Seeman, 2017, DNA nanotechnology, Nat. Rev. Mater., 3, 1, 10.1038/natrevmats.2017.68 Jani, 2019, Precision immunomodulation with synthetic nucleic acid technologies, Nat. Rev. Mater., 4, 451, 10.1038/s41578-019-0105-4 Zhao, 2019, Nanofabrication based on DNA nanotechnology, Nano Today, 26, 123, 10.1016/j.nantod.2019.03.004 Seeman, 1982, Nucleic acid junctions and lattices, J. Theor. Biol., 99, 237, 10.1016/0022-5193(82)90002-9 Guo, 1998, Inter-RNA interaction of phage φ29 pRNA to form a hexameric complex for viral DNA transportation, Mol. Cell, 2, 149, 10.1016/S1097-2765(00)80124-0 Guo, 2010, The emerging field of RNA nanotechnology, Nat. Nanotechnol., 5, 833, 10.1038/nnano.2010.231 Xu, 2018, Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy, Cancer Lett., 414, 57, 10.1016/j.canlet.2017.09.043 Jasinski, 2017, Advancement of the emerging field of RNA nanotechnology, ACS Nano, 11, 1142, 10.1021/acsnano.6b05737 Watts, 2008, Chemically modified siRNA: tools and applications, Drug Discov. Today, 13, 842, 10.1016/j.drudis.2008.05.007 Piao, 2015, Peptide ligation and RNA cleavage via an abiotic template interface, J. Am. Chem. Soc., 137, 3751, 10.1021/jacs.5b00236 Winfree, 1998, Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539, 10.1038/28998 Rothemund, 2006, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297, 10.1038/nature04586 Wei, 2012, Complex shapes self-assembled from single-stranded DNA tiles, Nature, 485, 623, 10.1038/nature11075 Ali, 2014, Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine, Chem. Soc. Rev., 43, 3324, 10.1039/c3cs60439j Wang, 2016, Inflammation‐triggered cancer immunotherapy by programmed delivery of CpG and anti‐PD1 antibody, Adv. Mater., 28, 8912, 10.1002/adma.201506312 Ramezani, 2020, Building machines with DNA molecules, Nat. Rev. Genet., 21, 5, 10.1038/s41576-019-0175-6 Wang, 2013, RNA–DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands, Chem. Commun., 49, 5462, 10.1039/c3cc41707g Shirai, 2005, Directional control in thermally driven single-molecule nanocars, Nano Lett., 5, 2330, 10.1021/nl051915k Smith, 2010, Molecular robots on the move, Nature, 465, 167, 10.1038/465167a Coluzza, 2013, Sequence controlled self-knotting colloidal patchy polymers, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.075501 Freitas, 2005, What is nanomedicine?, Nanomed. Nanotechnol. Biol. Med., 1, 2, 10.1016/j.nano.2004.11.003 Gu, 2010, A proximity-based programmable DNA nanoscale assembly line, Nature, 465, 202, 10.1038/nature09026 Lund, 2010, Molecular robots guided by prescriptive landscapes, Nature, 465, 206, 10.1038/nature09012 Surana, 2011, An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism, Nat. Commun., 2, 1, 10.1038/ncomms1340 Douglas, 2012, A logic-gated nanorobot for targeted transport of molecular payloads, Science, 335, 831, 10.1126/science.1214081 Lee, 2012, Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery, Nat. Nanotechnol., 7, 389, 10.1038/nnano.2012.73 Veetil, 2017, Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules, Nat. Nanotechnol., 12, 1183, 10.1038/nnano.2017.159 Gao, 2021, Biomedical micro‐/nanomotors: from overcoming biological barriers to in vivo imaging, Adv. Mater., 33, 10.1002/adma.202000512 Wang, 2017, A Silicon nanowire as a spectrally tunable light‐driven nanomotor, Adv. Mater., 29, 10.1002/adma.201701451 Wang, 2018, High‐motility visible light‐driven Ag/AgCl Janus micromotors, Small, 14 Dai, 2016, Programmable artificial phototactic microswimmer, Nat. Nanotechnol., 11, 1087, 10.1038/nnano.2016.187 Fernández‐Medina, 2020, Recent advances in nano‐and micromotors, Adv. Funct. Mater., 30, 10.1002/adfm.201908283 Esteban-Fernández de Ávila, 2017, Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis, ACS Nano, 11, 5367, 10.1021/acsnano.7b01926 Go, 2020, Multifunctional biodegradable microrobot with programmable morphology for biomedical applications, ACS Nano, 15, 1059, 10.1021/acsnano.0c07954 Tu, 2017, Self-propelled supramolecular nanomotors with temperature-responsive speed regulation, Nat. Chem., 9, 480, 10.1038/nchem.2674 Scaranti, 2020, Exploiting the folate receptor α in oncology, Nat. Rev. Clin. Oncol., 17, 349, 10.1038/s41571-020-0339-5 Gong, 2020, Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics, Nano Today, 32, 10.1016/j.nantod.2020.100851 Mura, 2013, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991, 10.1038/nmat3776 Augustine, 2020, Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery, J. Mater. Chem. B, 8, 5745, 10.1039/D0TB00721H Abbas, 2021, A DNA-based nanocarrier for efficient cancer therapy, J. Pharmaceut. Analy., 11, 330 Arvidsson, 2020, Environmental and health risks of nanorobots: an early review, Environ. Sci. J. Integr. Environ. Res.: Nano, 7, 2875 Krishnan, 2008, DNA's new avatar as nanoscale construction material, Resonance, 13, 195, 10.1007/s12045-008-0033-x Su, 2016, The rise of the DNA nanorobots, Mech. Eng., 138, 44, 10.1115/1.2016-Aug-3 Kumar, 2016, DNA nanotechnology for cancer therapy, Theranostics, 6, 710, 10.7150/thno.14203 Seeman, 2003, DNA in a material world, Nature, 421, 427, 10.1038/nature01406 Andersen, 2009, Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 459, 73, 10.1038/nature07971 Douglas, 2009, Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucleic Acids Res., 37, 5001, 10.1093/nar/gkp436 Douglas, 2009, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 459, 414, 10.1038/nature08016 Han, 2011, DNA origami with complex curvatures in three-dimensional space, Science, 332, 342, 10.1126/science.1202998 Dietz, 2009, Folding DNA into twisted and curved nanoscale shapes, Science, 325, 725, 10.1126/science.1174251 Han, 2013, DNA gridiron nanostructures based on four-arm junctions, Science, 339, 1412, 10.1126/science.1232252 Ke, 2012, Three-dimensional structures self-assembled from DNA bricks, Science, 338, 1177, 10.1126/science.1227268 Benson, 2015, DNA rendering of polyhedral meshes at the nanoscale, Nature, 523, 441, 10.1038/nature14586 Linko, 2013, The enabled state of DNA nanotechnology, Curr. Opin. Biotechnol., 24, 555, 10.1016/j.copbio.2013.02.001 Castro, 2011, A primer to scaffolded DNA origami, Nat. Methods, 8, 221, 10.1038/nmeth.1570 Seeman, 2003, At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology, Chem. Biol., 10, 1151, 10.1016/j.chembiol.2003.12.002 Bath, 2007, DNA nanomachines, Nat. Nanotechnol., 2, 275, 10.1038/nnano.2007.104 Yurke, 2000, A DNA-fuelled molecular machine made of DNA, Nature, 406, 605, 10.1038/35020524 Zhang, 2011, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3, 103, 10.1038/nchem.957 Wang, 2015, DNA switches: from principles to applications, Angew. Chem. Int. Ed., 54, 1098, 10.1002/anie.201404652 Asanuma, 2007, Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription, Nat. Protoc., 2, 203, 10.1038/nprot.2006.465 Liang, 2009, A supra‐photoswitch involving sandwiched DNA base pairs and azobenzenes for light‐driven nanostructures and nanodevices, Small, 5, 1761, 10.1002/smll.200900223 Endo, 2018, DNA origami nanomachines, Molecules, 23, 1766, 10.3390/molecules23071766 Castro, 2015, Mechanical design of DNA nanostructures, Nanoscale, 7, 5913, 10.1039/C4NR07153K Gerling, 2015, Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components, Science, 347, 1446, 10.1126/science.aaa5372 Willner, 2017, Single‐molecule observation of the photoregulated conformational dynamics of DNA origami nanoscissors, Angew. Chem. Int. Ed., 56, 15324, 10.1002/anie.201708722 Katsnelson, 2012, DNA robot could kill cancer cells, Nature, 1 Loukanov, 2019, Nanomaterials for cancer medication: from individual nanoparticles toward nanomachines and nanorobots, Pharmacia, 66, 147, 10.3897/pharmacia.66.e37739 Sarkar, 2018, Effect of nanotechnology on cancer disease, J. Bionanoscience, 12, 297, 10.1166/jbns.2018.1532 Takenaka, 2014, Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials, Chem.--Eur. J., 20, 14951, 10.1002/chem.201404757 Freitas, 2006, Pharmacytes: an ideal vehicle for targeted drug delivery, J. Nanosci. Nanotechnol., 6, 2769, 10.1166/jnn.2006.413 Bhat, 2014, Nanobots: the future of medicine, Int. J. Manag Eng. Sci., 5, 44 Lagzi, 2013, Chemical robotics—chemotactic drug carriers, Cent. Eur. J. Med., 8, 377 Couvreur, 2006, Nanotechnologies for drug delivery: application to cancer and autoimmune diseases, Prog. Solid State Chem., 34, 231, 10.1016/j.progsolidstchem.2005.11.009 Janda, 2006, Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin, Oncogene, 25, 7117, 10.1038/sj.onc.1209701 Aggarwal, 2022, The use of nanorobotics in the treatment therapy of cancer and its future aspects: a review, Cureus, 14 Koudelka, 2015, Virus-based nanoparticles as versatile nanomachines, Ann. Rev. of Virol., 2, 379, 10.1146/annurev-virology-100114-055141 Roman, 2005, Micro and nanotechnology, the next big tiny thing?, Mercer Bus., 1, 1 Adhikari, 2005, Nanobiotechnology: will it deliver?, Healthc. Purch. News, 1 Mutoh, 2006, Estrogen‐mediated post transcriptional down‐regulation of P‐glycoprotein in MDR1‐transduced human breast cancer cells, Cancer Sci., 97, 1198, 10.1111/j.1349-7006.2006.00300.x Xu, 2015, Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors, Angew. Chem., 127, 2555, 10.1002/ange.201410754 Artemov, 2001, Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid Tumors1, Cancer Res., 61, 3039 Cavalcanti, 2007, Nanorobot architecture for medical target identification, Nanotechnology, 19, 10.1088/0957-4484/19/01/015103 Sharma, 2008, Nanorobot movement: challenges and biologically inspired solutions, Int. J. Smart Sens. Intell. Syst., 1, 87 Juul, 2013, Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage, ACS Nano, 7, 9724, 10.1021/nn4030543 Park, 2014, Motility analysis of bacteria‐based microrobot (bacteriobot) using chemical gradient microchamber, Biotechnol. Bioeng., 111, 134, 10.1002/bit.25007 Perrault, 2014, Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability, ACS Nano, 8, 5132, 10.1021/nn5011914 Artemov, 2001, Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors, Cancer Res., 61, 3039 Li, 2009, Nanofabrication by DNA self-assembly, Mater. Today, 12, 24, 10.1016/S1369-7021(09)70157-9 Im, 2007, A dielectric-modulated field-effect transistor for biosensing, Nat. Nanotechnol., 2, 430, 10.1038/nnano.2007.180 Pison, 2011, vol. 1811302, B1 Goldstein, 2006 Fukuda, 2000, Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase, Circulation, 101, 2532, 10.1161/01.CIR.101.21.2532 Callagy, 2006, Bcl-2 is a prognostic marker in breast cancer independently of the Nottingham Prognostic Index, Clin. Cancer Res., 12, 2468, 10.1158/1078-0432.CCR-05-2719 Tan, 2007, A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure, Expert Syst. Appl., 33, 652, 10.1016/j.eswa.2006.06.012 Karan, 2012, Biological Response Modifier-a nanorobotics control system design for immunotherapy in cancer treatment Martel, 2006, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria, Appl. Phys. Lett., 89, 10.1063/1.2402221 Glecia, 2016, Nanorobotics in drug delivery systems for treatment of cancer: a review, J. Mater. Sci. Eng., 6, 167 Mazumder, 2020, Applications of nanorobots in medical techniques, Int. J. Pharma Sci. Res., 11, 3138 Kumar, 2014, Review on image segmentation techniques, Int. J. Scientific Res. Eng. Technol., 3, 993 Dolev, 2019, Design of nanorobots for exposing cancer cells, Nanotechnology, 30, 10.1088/1361-6528/ab1770 Park, 2019, Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy, Adv Healthc. Mater., 8, 10.1002/adhm.201900213 Zhang, 2020, Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment, Colloids Surf. B Biointerfaces, 194, 10.1016/j.colsurfb.2020.111204 Vyskocil, 2020, Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field, ACS Nano, 14, 8247, 10.1021/acsnano.0c01705 Venugopalan, 2020, Fantastic voyage of nanomotors into the cell, ACS Nano, 14, 9423, 10.1021/acsnano.0c05217 Srivastava, 2016, Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release, Adv. Mater., 28, 832, 10.1002/adma.201504327 Lee, 2020, Microrobots: a needle‐type microrobot for targeted drug delivery by affixing to a microtissue (Adv. Healthcare mater. 7/2020), Adv Healthc. Mater., 9 Felfoul, 2016, Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nat. Nanotechnol., 11, 941, 10.1038/nnano.2016.137 Wang, 2020, Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy, Research, 3676954, 1 Deng, 2020, Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics, ACS Nano, 14, 11452, 10.1021/acsnano.0c03824 Zhong, 2020, Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy, Adv. Funct. Mater., 30 Esteban-Fernández de Ávila, 2016, Acoustically propelled nanomotors for intracellular siRNA delivery, ACS Nano, 10, 4997, 10.1021/acsnano.6b01415 Ma, 2019, An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2, Nano Lett., 19, 4505, 10.1021/acs.nanolett.9b01320 Zoaby, 2017, Autonomous bacterial nanoswimmers target cancer, J. Contr. Release, 257, 68, 10.1016/j.jconrel.2016.10.006 Wu, 2015, Biodegradable protein-based rockets for drug transportation and light-triggered release, ACS Appl. Mater. Interfaces, 7, 250, 10.1021/am507680u Park, 2013, New paradigm for tumor theranostic methodology using bacteria-based microrobot, Sci. Rep., 3, 1, 10.1038/srep03394 Li, 2018, A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo, Nat. Biotechnol., 36, 258, 10.1038/nbt.4071 Xu, 2018, Sperm-hybrid micromotor for targeted drug delivery, ACS Nano, 12, 327, 10.1021/acsnano.7b06398 Steiniger, 2004, Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles, Int. J. Cancer, 109, 759, 10.1002/ijc.20048