Nanorobots: An innovative approach for DNA-based cancer treatment
Tài liệu tham khảo
Thun, 2010, The global burden of cancer: priorities for prevention, Carcinogenesis, 31, 100, 10.1093/carcin/bgp263
Bray, 2006, Predicting the future burden of cancer, Nat. Rev. Cancer, 6, 63, 10.1038/nrc1781
Blackadar, 2016, Historical review of the causes of cancer, World J. Clin. Oncol., 7, 54, 10.5306/wjco.v7.i1.54
GIZMODO
Institute
Liu, 2017, Aptamer selection and applications for breast cancer diagnostics and therapy, J. Nanobiotechnol., 15, 1, 10.1186/s12951-017-0311-4
Chen, 2018, DNA nanotechnology for cancer diagnosis and therapy, Int. J. Mol. Sci., 19, 1671, 10.3390/ijms19061671
Aeran, 2015, Nanodentistry: is just a fiction or future, J. Oral Biology and Craniofacial Res., 5, 207, 10.1016/j.jobcr.2015.06.012
Kumar, 2018, Nanorobots a future device for diagnosis and treatment, J. Pharm. Pharmacol., 5, 44
Neto, 2010, A review on nanorobotics, J. Comput. Theor. Nanosci., 7, 1870, 10.1166/jctn.2010.1552
Sivasankar, 2012, Brief review on nano robots in bio medical applications, Adv. Robot. Autom., 1, 2
Manjunath, 2014, The promising future in medicine: nanorobots, Biomed. Sci. Eng., 2, 42
Jeong, 2022, Stimuli-responsive adaptive nanotoxin to directly penetrate the cellular membrane by molecular folding and unfolding, J. Am. Chem. Soc., 144, 5503, 10.1021/jacs.2c00084
Desrosiers, 2022, Programmable self-regulated molecular buffers for precise sustained drug delivery, Nat. Commun., 13, 1, 10.1038/s41467-022-33491-7
Harroun, 2018, Programmable DNA switches and their applications, Nanoscale, 10, 4607, 10.1039/C7NR07348H
Lenaghan, 2013, Grand challenges in bioengineered nanorobotics for cancer therapy, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng., 60, 667
Paul, 2018, A brief insight into nanorobotics, 23
Ricotti, 2015, Advanced micro-nano-bio systems for future targeted therapies, Curr. Nanosci., 11, 144, 10.2174/1573413710666141114221246
Giri, 2021, A brief review on challenges in design and development of nanorobots for medical applications, Appl. Sci., 11, 10.3390/app112110385
García-López, 2017, Molecular machines open cell membranes, Nature, 548, 567, 10.1038/nature23657
Korn
Bourzac, 2012, Nanotechnology: carrying drugs, Nature, 491, S58, 10.1038/491S58a
Daphne
American
clnMichelle
Gmeiner, 2014, Nanotechnology for cancer treatment, Nanotechnol. Rev., 3, 111, 10.1515/ntrev-2013-0013
Golan, 2011
Rang, 2011
Nishioka, 2006, ANVISA and clinical research in Brazil, Rev. Assoc. Méd. Bras., 52, 60, 10.1590/S0104-42302006000100025
Kratz, 2012, Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems, J. Contr. Release, 164, 221, 10.1016/j.jconrel.2012.05.045
Zeeshan, 2013, Graphite coating of iron nanowires for nanorobotic applications: synthesis, characterization and magnetic wireless manipulation, Adv. Funct. Mater., 23, 823, 10.1002/adfm.201202046
Kojima, 2013, Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems, Acta Biomater., 9, 5673, 10.1016/j.actbio.2012.11.013
Scialabba, 2014, Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy, Eur. J. Pharm. Biopharm., 88, 695, 10.1016/j.ejpb.2014.09.008
Watanabe, 2013, Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells, Int. J. Pharm., 446, 81, 10.1016/j.ijpharm.2013.02.002
Liu, 2011, Carbon materials for drug delivery & cancer therapy, Mater. Today, 14, 316, 10.1016/S1369-7021(11)70161-4
Zhao, 2013, Molecular targeting of liposomal nanoparticles to tumor microenvironment, Int. J. Nanomed., 8, 61
Coates, 1983, On the receiving end—patient perception of the side-effects of cancer chemotherapy, Eur. J. Cancer Clin. Oncol., 19, 203, 10.1016/0277-5379(83)90418-2
Tannock, 2002, Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy, Clin. Cancer Res., 8, 878
Mousa, 2011, Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications, Cancers, 3, 2888, 10.3390/cancers3032888
Sutradhar, 2014, Nanotechnology in cancer drug delivery and selective targeting, Int. Sch. Res. Notices, 939378
Brown, 1999, Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs, Expet Rev. Mol. Med., 1, 1, 10.1017/S1462399499001099X
Bae, 2011, Targeted drug delivery to tumors: myths, reality and possibility, J. Contr. Release, 153, 198, 10.1016/j.jconrel.2011.06.001
Gillies, 2005, Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today, 10, 35, 10.1016/S1359-6446(04)03276-3
Surekha, 2021, PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy, Colloids Surf. B Biointerfaces, 204, 10.1016/j.colsurfb.2021.111837
Slowing, 2008, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278, 10.1016/j.addr.2008.03.012
Khairnar, 2022, Nanocrystals: an approachable delivery system for anticancer therapeutics, Curr. Drug Metabol., 23, 603, 10.2174/1389200223666220610165850
Torchilin, 2005, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145, 10.1038/nrd1632
Yang, 2015, Gold nanomaterials at work in biomedicine, Chem. Rev., 115, 10410, 10.1021/acs.chemrev.5b00193
Lee, 2012, Polymersomes for drug delivery: design, formation and characterization, J. Contr. Release, 161, 473, 10.1016/j.jconrel.2011.10.005
Arruebo, 2007, Magnetic nanoparticles for drug delivery, Nano Today, 2, 22, 10.1016/S1748-0132(07)70084-1
Singh, 2021, Nanocarrier mediated autophagy: an emerging trend for cancer therapy, Process Biochem., 109, 198, 10.1016/j.procbio.2021.07.011
Boisseau, 2011, Nanomedicine, nanotechnology in medicine, Compt. Rendus Phys., 12, 620, 10.1016/j.crhy.2011.06.001
Laurent, 2008, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108, 2064, 10.1021/cr068445e
Shin, 2016, Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries, Sci. Rep., 6, 1, 10.1038/srep26332
Prokop, 2008, Nanovehicular intracellular delivery systems, J. Pharmaceut. Sci., 97, 3518, 10.1002/jps.21270
Yang, 2014, Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation, Mol. Pharm., 11, 1250, 10.1021/mp400703d
Taiarol, 2020, An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy, Nanomedicine, 15, 1861, 10.2217/nnm-2020-0132
Seeman, 2017, DNA nanotechnology, Nat. Rev. Mater., 3, 1, 10.1038/natrevmats.2017.68
Jani, 2019, Precision immunomodulation with synthetic nucleic acid technologies, Nat. Rev. Mater., 4, 451, 10.1038/s41578-019-0105-4
Zhao, 2019, Nanofabrication based on DNA nanotechnology, Nano Today, 26, 123, 10.1016/j.nantod.2019.03.004
Seeman, 1982, Nucleic acid junctions and lattices, J. Theor. Biol., 99, 237, 10.1016/0022-5193(82)90002-9
Guo, 1998, Inter-RNA interaction of phage φ29 pRNA to form a hexameric complex for viral DNA transportation, Mol. Cell, 2, 149, 10.1016/S1097-2765(00)80124-0
Guo, 2010, The emerging field of RNA nanotechnology, Nat. Nanotechnol., 5, 833, 10.1038/nnano.2010.231
Xu, 2018, Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy, Cancer Lett., 414, 57, 10.1016/j.canlet.2017.09.043
Jasinski, 2017, Advancement of the emerging field of RNA nanotechnology, ACS Nano, 11, 1142, 10.1021/acsnano.6b05737
Watts, 2008, Chemically modified siRNA: tools and applications, Drug Discov. Today, 13, 842, 10.1016/j.drudis.2008.05.007
Piao, 2015, Peptide ligation and RNA cleavage via an abiotic template interface, J. Am. Chem. Soc., 137, 3751, 10.1021/jacs.5b00236
Winfree, 1998, Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539, 10.1038/28998
Rothemund, 2006, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297, 10.1038/nature04586
Wei, 2012, Complex shapes self-assembled from single-stranded DNA tiles, Nature, 485, 623, 10.1038/nature11075
Ali, 2014, Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine, Chem. Soc. Rev., 43, 3324, 10.1039/c3cs60439j
Wang, 2016, Inflammation‐triggered cancer immunotherapy by programmed delivery of CpG and anti‐PD1 antibody, Adv. Mater., 28, 8912, 10.1002/adma.201506312
Ramezani, 2020, Building machines with DNA molecules, Nat. Rev. Genet., 21, 5, 10.1038/s41576-019-0175-6
Wang, 2013, RNA–DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands, Chem. Commun., 49, 5462, 10.1039/c3cc41707g
Shirai, 2005, Directional control in thermally driven single-molecule nanocars, Nano Lett., 5, 2330, 10.1021/nl051915k
Smith, 2010, Molecular robots on the move, Nature, 465, 167, 10.1038/465167a
Coluzza, 2013, Sequence controlled self-knotting colloidal patchy polymers, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.075501
Freitas, 2005, What is nanomedicine?, Nanomed. Nanotechnol. Biol. Med., 1, 2, 10.1016/j.nano.2004.11.003
Gu, 2010, A proximity-based programmable DNA nanoscale assembly line, Nature, 465, 202, 10.1038/nature09026
Lund, 2010, Molecular robots guided by prescriptive landscapes, Nature, 465, 206, 10.1038/nature09012
Surana, 2011, An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism, Nat. Commun., 2, 1, 10.1038/ncomms1340
Douglas, 2012, A logic-gated nanorobot for targeted transport of molecular payloads, Science, 335, 831, 10.1126/science.1214081
Lee, 2012, Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery, Nat. Nanotechnol., 7, 389, 10.1038/nnano.2012.73
Veetil, 2017, Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules, Nat. Nanotechnol., 12, 1183, 10.1038/nnano.2017.159
Gao, 2021, Biomedical micro‐/nanomotors: from overcoming biological barriers to in vivo imaging, Adv. Mater., 33, 10.1002/adma.202000512
Wang, 2017, A Silicon nanowire as a spectrally tunable light‐driven nanomotor, Adv. Mater., 29, 10.1002/adma.201701451
Wang, 2018, High‐motility visible light‐driven Ag/AgCl Janus micromotors, Small, 14
Dai, 2016, Programmable artificial phototactic microswimmer, Nat. Nanotechnol., 11, 1087, 10.1038/nnano.2016.187
Fernández‐Medina, 2020, Recent advances in nano‐and micromotors, Adv. Funct. Mater., 30, 10.1002/adfm.201908283
Esteban-Fernández de Ávila, 2017, Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis, ACS Nano, 11, 5367, 10.1021/acsnano.7b01926
Go, 2020, Multifunctional biodegradable microrobot with programmable morphology for biomedical applications, ACS Nano, 15, 1059, 10.1021/acsnano.0c07954
Tu, 2017, Self-propelled supramolecular nanomotors with temperature-responsive speed regulation, Nat. Chem., 9, 480, 10.1038/nchem.2674
Scaranti, 2020, Exploiting the folate receptor α in oncology, Nat. Rev. Clin. Oncol., 17, 349, 10.1038/s41571-020-0339-5
Gong, 2020, Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics, Nano Today, 32, 10.1016/j.nantod.2020.100851
Mura, 2013, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991, 10.1038/nmat3776
Augustine, 2020, Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery, J. Mater. Chem. B, 8, 5745, 10.1039/D0TB00721H
Abbas, 2021, A DNA-based nanocarrier for efficient cancer therapy, J. Pharmaceut. Analy., 11, 330
Arvidsson, 2020, Environmental and health risks of nanorobots: an early review, Environ. Sci. J. Integr. Environ. Res.: Nano, 7, 2875
Krishnan, 2008, DNA's new avatar as nanoscale construction material, Resonance, 13, 195, 10.1007/s12045-008-0033-x
Su, 2016, The rise of the DNA nanorobots, Mech. Eng., 138, 44, 10.1115/1.2016-Aug-3
Kumar, 2016, DNA nanotechnology for cancer therapy, Theranostics, 6, 710, 10.7150/thno.14203
Seeman, 2003, DNA in a material world, Nature, 421, 427, 10.1038/nature01406
Andersen, 2009, Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 459, 73, 10.1038/nature07971
Douglas, 2009, Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucleic Acids Res., 37, 5001, 10.1093/nar/gkp436
Douglas, 2009, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 459, 414, 10.1038/nature08016
Han, 2011, DNA origami with complex curvatures in three-dimensional space, Science, 332, 342, 10.1126/science.1202998
Dietz, 2009, Folding DNA into twisted and curved nanoscale shapes, Science, 325, 725, 10.1126/science.1174251
Han, 2013, DNA gridiron nanostructures based on four-arm junctions, Science, 339, 1412, 10.1126/science.1232252
Ke, 2012, Three-dimensional structures self-assembled from DNA bricks, Science, 338, 1177, 10.1126/science.1227268
Benson, 2015, DNA rendering of polyhedral meshes at the nanoscale, Nature, 523, 441, 10.1038/nature14586
Linko, 2013, The enabled state of DNA nanotechnology, Curr. Opin. Biotechnol., 24, 555, 10.1016/j.copbio.2013.02.001
Castro, 2011, A primer to scaffolded DNA origami, Nat. Methods, 8, 221, 10.1038/nmeth.1570
Seeman, 2003, At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology, Chem. Biol., 10, 1151, 10.1016/j.chembiol.2003.12.002
Bath, 2007, DNA nanomachines, Nat. Nanotechnol., 2, 275, 10.1038/nnano.2007.104
Yurke, 2000, A DNA-fuelled molecular machine made of DNA, Nature, 406, 605, 10.1038/35020524
Zhang, 2011, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3, 103, 10.1038/nchem.957
Wang, 2015, DNA switches: from principles to applications, Angew. Chem. Int. Ed., 54, 1098, 10.1002/anie.201404652
Asanuma, 2007, Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription, Nat. Protoc., 2, 203, 10.1038/nprot.2006.465
Liang, 2009, A supra‐photoswitch involving sandwiched DNA base pairs and azobenzenes for light‐driven nanostructures and nanodevices, Small, 5, 1761, 10.1002/smll.200900223
Endo, 2018, DNA origami nanomachines, Molecules, 23, 1766, 10.3390/molecules23071766
Castro, 2015, Mechanical design of DNA nanostructures, Nanoscale, 7, 5913, 10.1039/C4NR07153K
Gerling, 2015, Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components, Science, 347, 1446, 10.1126/science.aaa5372
Willner, 2017, Single‐molecule observation of the photoregulated conformational dynamics of DNA origami nanoscissors, Angew. Chem. Int. Ed., 56, 15324, 10.1002/anie.201708722
Katsnelson, 2012, DNA robot could kill cancer cells, Nature, 1
Loukanov, 2019, Nanomaterials for cancer medication: from individual nanoparticles toward nanomachines and nanorobots, Pharmacia, 66, 147, 10.3897/pharmacia.66.e37739
Sarkar, 2018, Effect of nanotechnology on cancer disease, J. Bionanoscience, 12, 297, 10.1166/jbns.2018.1532
Takenaka, 2014, Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials, Chem.--Eur. J., 20, 14951, 10.1002/chem.201404757
Freitas, 2006, Pharmacytes: an ideal vehicle for targeted drug delivery, J. Nanosci. Nanotechnol., 6, 2769, 10.1166/jnn.2006.413
Bhat, 2014, Nanobots: the future of medicine, Int. J. Manag Eng. Sci., 5, 44
Lagzi, 2013, Chemical robotics—chemotactic drug carriers, Cent. Eur. J. Med., 8, 377
Couvreur, 2006, Nanotechnologies for drug delivery: application to cancer and autoimmune diseases, Prog. Solid State Chem., 34, 231, 10.1016/j.progsolidstchem.2005.11.009
Janda, 2006, Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin, Oncogene, 25, 7117, 10.1038/sj.onc.1209701
Aggarwal, 2022, The use of nanorobotics in the treatment therapy of cancer and its future aspects: a review, Cureus, 14
Koudelka, 2015, Virus-based nanoparticles as versatile nanomachines, Ann. Rev. of Virol., 2, 379, 10.1146/annurev-virology-100114-055141
Roman, 2005, Micro and nanotechnology, the next big tiny thing?, Mercer Bus., 1, 1
Adhikari, 2005, Nanobiotechnology: will it deliver?, Healthc. Purch. News, 1
Mutoh, 2006, Estrogen‐mediated post transcriptional down‐regulation of P‐glycoprotein in MDR1‐transduced human breast cancer cells, Cancer Sci., 97, 1198, 10.1111/j.1349-7006.2006.00300.x
Xu, 2015, Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors, Angew. Chem., 127, 2555, 10.1002/ange.201410754
Artemov, 2001, Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid Tumors1, Cancer Res., 61, 3039
Cavalcanti, 2007, Nanorobot architecture for medical target identification, Nanotechnology, 19, 10.1088/0957-4484/19/01/015103
Sharma, 2008, Nanorobot movement: challenges and biologically inspired solutions, Int. J. Smart Sens. Intell. Syst., 1, 87
Juul, 2013, Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage, ACS Nano, 7, 9724, 10.1021/nn4030543
Park, 2014, Motility analysis of bacteria‐based microrobot (bacteriobot) using chemical gradient microchamber, Biotechnol. Bioeng., 111, 134, 10.1002/bit.25007
Perrault, 2014, Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability, ACS Nano, 8, 5132, 10.1021/nn5011914
Artemov, 2001, Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors, Cancer Res., 61, 3039
Li, 2009, Nanofabrication by DNA self-assembly, Mater. Today, 12, 24, 10.1016/S1369-7021(09)70157-9
Im, 2007, A dielectric-modulated field-effect transistor for biosensing, Nat. Nanotechnol., 2, 430, 10.1038/nnano.2007.180
Pison, 2011, vol. 1811302, B1
Goldstein, 2006
Fukuda, 2000, Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase, Circulation, 101, 2532, 10.1161/01.CIR.101.21.2532
Callagy, 2006, Bcl-2 is a prognostic marker in breast cancer independently of the Nottingham Prognostic Index, Clin. Cancer Res., 12, 2468, 10.1158/1078-0432.CCR-05-2719
Tan, 2007, A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure, Expert Syst. Appl., 33, 652, 10.1016/j.eswa.2006.06.012
Karan, 2012, Biological Response Modifier-a nanorobotics control system design for immunotherapy in cancer treatment
Martel, 2006, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria, Appl. Phys. Lett., 89, 10.1063/1.2402221
Glecia, 2016, Nanorobotics in drug delivery systems for treatment of cancer: a review, J. Mater. Sci. Eng., 6, 167
Mazumder, 2020, Applications of nanorobots in medical techniques, Int. J. Pharma Sci. Res., 11, 3138
Kumar, 2014, Review on image segmentation techniques, Int. J. Scientific Res. Eng. Technol., 3, 993
Dolev, 2019, Design of nanorobots for exposing cancer cells, Nanotechnology, 30, 10.1088/1361-6528/ab1770
Park, 2019, Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy, Adv Healthc. Mater., 8, 10.1002/adhm.201900213
Zhang, 2020, Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment, Colloids Surf. B Biointerfaces, 194, 10.1016/j.colsurfb.2020.111204
Vyskocil, 2020, Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field, ACS Nano, 14, 8247, 10.1021/acsnano.0c01705
Venugopalan, 2020, Fantastic voyage of nanomotors into the cell, ACS Nano, 14, 9423, 10.1021/acsnano.0c05217
Srivastava, 2016, Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release, Adv. Mater., 28, 832, 10.1002/adma.201504327
Lee, 2020, Microrobots: a needle‐type microrobot for targeted drug delivery by affixing to a microtissue (Adv. Healthcare mater. 7/2020), Adv Healthc. Mater., 9
Felfoul, 2016, Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nat. Nanotechnol., 11, 941, 10.1038/nnano.2016.137
Wang, 2020, Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy, Research, 3676954, 1
Deng, 2020, Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics, ACS Nano, 14, 11452, 10.1021/acsnano.0c03824
Zhong, 2020, Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy, Adv. Funct. Mater., 30
Esteban-Fernández de Ávila, 2016, Acoustically propelled nanomotors for intracellular siRNA delivery, ACS Nano, 10, 4997, 10.1021/acsnano.6b01415
Ma, 2019, An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2, Nano Lett., 19, 4505, 10.1021/acs.nanolett.9b01320
Zoaby, 2017, Autonomous bacterial nanoswimmers target cancer, J. Contr. Release, 257, 68, 10.1016/j.jconrel.2016.10.006
Wu, 2015, Biodegradable protein-based rockets for drug transportation and light-triggered release, ACS Appl. Mater. Interfaces, 7, 250, 10.1021/am507680u
Park, 2013, New paradigm for tumor theranostic methodology using bacteria-based microrobot, Sci. Rep., 3, 1, 10.1038/srep03394
Li, 2018, A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo, Nat. Biotechnol., 36, 258, 10.1038/nbt.4071
Xu, 2018, Sperm-hybrid micromotor for targeted drug delivery, ACS Nano, 12, 327, 10.1021/acsnano.7b06398
Steiniger, 2004, Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles, Int. J. Cancer, 109, 759, 10.1002/ijc.20048