Nanoporous Ag template from partially sintered Ag-Zn compact by dezincification

Bulletin of Materials Science - Tập 37 - Trang 1353-1367 - 2014
M. Mandal1, A. P. Moon1, S. Sangal1, K. Mondal1
1Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Tóm tắt

A novel approach is followed to successfully fabricate nanoporous thin Ag template using partial sintering of elemental Ag and Zn (both have 99.9% purity) and subsequent dezincification. The starting materials for dezincification are partially sintered Ag-Zn aggregates (2.5, 5 and 10 wt% Zn). Partial sintering is done in order to achieve only interfacial bonding with the aim to maintain maximum potential difference between Ag and Zn particles during dezincification process in 1 N HCl and 3.5 wt% NaCl solutions. Two different dissolution methods, namely, simple immersion for 45 days and electrochemical way (holding the sample at critical potential), are employed. Electrochemical polarization tests are carried out to determine the critical potential for subsequent chrono-amperometry. X-ray diffraction, optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy are carried out to examine microstructural evolution, size, distribution and nature of pores in sintered aggregate as well as in template.

Tài liệu tham khảo

Attard G S, Bartlett P N, Coleman N R B, Elliott J M, Owen J R and Wang J H 1997 Science 278 838 Balluffi R W and Cahn J W 1981 Acta Metall. 29 493 Banhart J 2001 Prog. Mater. Sci. 46 559 Bartlett P N, Gollas B, Guerin S and Marwan J 2002 Phys. Chem. Chem. Phys. 4 3835 Bond G C and Thompson D T 1999 Catal. Rev. Sci. Eng. 41 319 Chen Q and Sieradzki K 2013 J. Electrochem. Soc. 160 C226 Cherevko S, Xing X and Chung C 2010 Electrochem. Commun. 12 467 Deakin J, Dong Z, Lynch B and Newman R C 2004 Corros. Sci. 46 2117 Ding Y and Erlebacher J D 2003 J. Amer. Chem. Soc. 125 7772 Erlebacher J D, Aziz M J, Karma A, Dimitrov N and Sieradzki K 2001 Nature 410 450 Fritz J D and Pickering H W 1991 J. Electrochem. Soc. 138 3209 Forty A J 1979 Nature 282 597 Hayes J, Hodge A, Biener J, Hamza A V and Sieradzki K 2006 J. Mater. Res. 21 2611 Huang J F and Sun I W 2004 Chem. Mater. 16 1829 Jia F L, Yu C F, Ai Z H and Zhang L Z 2007 Chem. Mater. 19 3648 Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O and Ryoo R 2001 Nature 412 169 Katagiri A and Nakata M 2003 J. Electrochem. Soc. 150 C585 Li R and Sieradzki K 1992 Phys. Rev. Lett. 68 1168 Mandal M, Singh D, Gouthama, Murty B S, Sangal S and Mondal K 2014 Bull. Mater. Sci. 37 743 Massalski T B 1986 Binary alloy phase diagram (OH, Metals Park: American Society for Metals) Moffat T P, Fan F R and Bard A J 1991 J. Electrochem. Soc. 138 3224 Nakajima H, Hyun S K, Ohashi K, Ota K and Murakami K 2001 Colloidal Surf A: Physicochem. Eng. Aspects 179 209 Newman R C, Meng F T and Sieradzki K 1988 Corros. Sci. 28 523 Pavlik A and Adkins H 1946 J. Am. Chem. Soc. 68 1471 Pickering H W and Wagner C 1967 J. Electrochem. Soc. 114 698 Pourbaix M 1966 Atlas of electrochemical equilibria in aqueous solutions (New York: Pergamon) Pugh D V, Dursun A and Corcoran S G 2005 J. Electrochem. Soc. 152 B455 Qiu H, Zhang Z, Huang X and Qu Y 2011 Chem. Phys. Chem. 12 2118 Rintoul M D, Torquato S, Yeong C, Keane D T, Erramilli S, Jun Y N, Dabbs D M and Akshay I A 1996 Phys. Rev. 54 2663 Shapovalov V 1994 MRS Bull. 19 24 Sieradzki K and Newman R C 1986 J. Electrochem. Soc. 133 1979 Velev O D and Kaler E W 2000 Adv. Mater. 12 531 Wada T, Setyawan A D, Yubuta K and Kato H 2011 Scr. Mater. 65 532 Yeh F H, Tai C C, Huang J F and Sun I W 2006 J. Phys. Chem. B110 5215 You T Y, Niwa O, Tomita M and Hirono S 2003 Anal. Chem. 75 2080 Zhang C, Sun J, Xu J, Wang X, Ji H, Zhao C and Zhang Z 2012 Electrochim. Acta 63 302