Nanopores: maltoporin channel as a sensor for maltodextrin and lambda-phage

Journal of Nanobiotechnology - Tập 3 - Trang 1-6 - 2005
E Berkane1,2, F Orlik2, A Charbit3, C Danelon1, D Fournier1, R Benz2, M Winterhalter1,4
1Institut Pharmacologie & Biologie Structurale-CNRS UMR5089, Toulouse, France
2Lehrstuhl für Biotechnologie, Biozentrum, Würzburg, Germany
3Inserm U-570, CHU Necker-Enfants Malades, Paris, France
4International University Bremen, School of Engineering and Science, Bremen, Germany

Tóm tắt

To harvest nutrition from the outside bacteria e.g. E. coli developed in the outer cell wall a number of sophisticated channels called porins. One of them, maltoporin, is a passive specific channel for the maltodextrin uptake. This channel was also named LamB as the bacterial virus phage Lambda mis-uses this channel to recognise the bacteria. The first step is a reversible binding followed after a lag phase by DNA injection. To date little is known about the binding capacity and less on the DNA injection mechanism. To elucidate the mechanism and to show the sensitivity of our method we reconstituted maltoporin in planar lipid membranes. Application of an external transmembrane electric field causes an ion current across the channel. Maltoporin channel diameter is around a few Angstroem. At this size the ion current is extremely sensitive to any modification of the channels surface. Protein conformational changes, substrate binding etc will cause fluctuations reflecting the molecular interactions with the channel wall. The recent improvement in ion current fluctuation analysis allows now studying the interaction of solutes with the channel on a single molecular level. We could demonstrate the asymmetry of the bacterial phage Lambda binding to its natural receptor maltoporin. We suggest that this type of measurement can be used as a new type of biosensors.

Tài liệu tham khảo

Colletier J-P, Chaize B, Winterhalter M, Fournier D: Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnology. 2002, 2: 9-17. 10.1186/1472-6750-2-9. Howorka S, Nam J, Bayley H, Kahne D: Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew Chemie Int Ed. 2004, 43: 842-846. 10.1002/anie.200352614. Bezrukov SM: Ion channels as molecular coulter counters to probe metabolite transport. J Membr Biol. 2000, 174: 1-13. 10.1007/s002320001026. Kullman L, Winterhalter M, Bezrukov SM: Transport of maltodextrins through maltoporin: A single-channel study. Biophys J. 2002, 82: 803-812. Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM: Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci (USA). 2002, 99: 9789-94. 10.1073/pnas.152206799. Van Gelder P, Dumas F, Winterhalter M: Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophys Chem. 2000, 85: 153-67. 10.1016/S0301-4622(99)00153-2. Szmelcman S, Hofnung M: Maltose transport in Escherichia coli K12. Involvement of the bacteriophage lambda receptor. J Bacteriol. 1975, 124: 112-118. Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW: Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol. 1988, 2: 1-8. Szmelcman S, Schwartz M, Silhavy TJ, Boos W: Maltose transport in Escherichia coli K-12: a comparison of transport kinetics in wild-type and lambda-resistant mutants with the dissociation constant of the maltose-binding protein as measured by fluorescent quenching. Eur J Biochem. 1976, 65: 13-19. 10.1111/j.1432-1033.1976.tb10383.x. Benz R, Schmid A, Nakae T, Vos-Scheperkeuter GH: Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol. 1986, 165: 978-986. Dutzler R, Wang Y-F, Rizkallah PJ, Rosenbusch JP, Schirmer T: Crystal structures of various maltooligosaccharides bound to Maltoporin reveal a specific sugar translocation pathway. Structure. 1996, 4: 127-134. 10.1016/S0969-2126(96)00016-0. Roa M, Scandella D: Multiple steps during the interaction between coliphage lambda and its receptor protein in vitro. Virology. 1976, 72: 182-194. 10.1016/0042-6822(76)90322-6. Wang J, Hofnung M, Charbit A: The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J Bact. 2000, 182: 508-512. 10.1128/JB.182.2.508-512.2000. Montal M, Mueller P: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Nat Acad Sci (USA). 1972, 69: 3561-3566. Benz R, Janko K, Boos W, Läuger P: Formation of large, ion permeable membrane channels by matrix protein (porin) of Escherichia coli. Biochem Biophys Acta. 1978, 511: 305-319. Danelon C, Brando T, Winterhalter M: Probing the orientation of reconstituted Maltoporin channels at the single-protein level. J Biol Chem. 2003, 278: 35542-51. 10.1074/jbc.M305434200. Van Gelder P, Dumas F, Rosenbusch J, Winterhalter M: Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. Eur J Biochem. 2000, 267: 79-84. 10.1046/j.1432-1327.2000.00960.x. Andersen C, Schiffler B, Charbit A, Benz R: PH-induced collapse of the extracellular loops closes Escherichia coli maltoporin and allows the study of asymmetric sugar binding. J Biol Chem. 2002, 277: 41318-25. 10.1074/jbc.M206804200. Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW: Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J. 1999, 77: 3227-33. Kasianowicz JJ, Burden DL, Han LC, Cheley S, Bayley H: Genetically engineered metal ion binding sites on the outside of a channel's transmembrane beta-barrel. Biophys J. 1999, 76: 837-45. Bruggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, Fertig N: High quality ion channel analysis on a chip with the NPC technology. Assay Drug Dev Technol. 2003, 1: 665-673. 10.1089/154065803770381020. Schmidt C, Mayer M, Vogel H: A Chip-Based Biosensor for the Functional Analysis of Single Ion Channels. Angew Chem Int Ed Engl. 2000, 39: 3137-3140. 10.1002/1521-3773(20000901)39:17<3137::AID-ANIE3137>3.0.CO;2-D.