Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?

NeuroImage - Tập 54 - Trang S106-S124 - 2011
Babak Kateb1,2,3,4,5, Katherine Chiu6, Keith L. Black5, Vicky Yamamoto4, Bhavraj Khalsa6, Julia Y. Ljubimova5, Hui Ding5, Rameshwar Patil5, Jose Antonio Portilla-Arias5, Mike Modo7, David F. Moore2,8, Keyvan Farahani9, Michael S. Okun2,10, Neal Prakash2,11, Josh Neman12, Daniel Ahdoot1, Warren Grundfest1,2,12, Shouleh Nikzad1,2,4,13, John D. Heiss2,14
1Brain Mapping Foundation, West Hollywood, CA 90046, USA
2International Brain Mapping & Intraoperative Surgical Planning Society (IBMISPS), West Hollywood, CA 90046, USA
3USC Viterbi School of Engineering, Los Angeles, CA 90089, USA
4USC-Keck School of Medicine, Los Angeles, CA 90033, USA
5Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
6University of California at Irvine, School of Medicine, Irvine, CA 92697, USA
7Kings of College London, London, UK
8Defense Veteran Brain Injury Center (DVBIC) at Walter Reed Army Medical Center, Washington, DC 20307, USA
9National Cancer Institute, Bethesda, MD 20892 USA
10University of Florida Movement Disorders Center, Departments of Neurology and Neurosurgery, Gainesville, FL 32610, USA
11University of Hawaii, John A. Burns School of Medicine, Manoa, HI, 96813, USA
12UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
13Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, 91109, USA
14National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD 20824, USA

Tài liệu tham khảo

Abes, 2009, Peptide-based delivery of steric-block PNA oligonucleotides, Methods Mol. Biol., 480, 85, 10.1007/978-1-59745-429-2_6 Adams, 2003, Amphiphilic block copolymers for drug delivery, J. Pharm. Sci., 92, 1343, 10.1002/jps.10397 Aillon, 2009, Effects of nanomaterial physicochemical properties on in vivo toxicity, Adv. Drug Deliv. Rev., 61, 457, 10.1016/j.addr.2009.03.010 Amoh, 2008, Color-coded fluorescent protein imaging of angiogenesis: the AngioMouse models, Curr. Pharm. Des., 14, 3810, 10.2174/138161208786898644 Amsharov, 2009, Synthesis of a higher fullerene precursor-an “unrolled” C84 fullerene, Chem. Commun. (Camb.), 19, 2691, 10.1039/b901496a Anderson, 2005, Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model, Blood, 105, 420, 10.1182/blood-2004-06-2222 Andrievsky, 2009, Peculiarities of the antioxidant and radioprotective effects of hydrated c(60) fullerene nanostructures in vitro and in vivo, Free Radic. Biol. Med., 10.1016/j.freeradbiomed.2009.06.016 Arbab, 2004, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI, Blood, 104, 1217, 10.1182/blood-2004-02-0655 Arbab, 2005, A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging, NMR Biomed., 18, 383, 10.1002/nbm.970 Arbab, 2005, Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells, NMR Biomed., 18, 553, 10.1002/nbm.991 Arbab, 2005, Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis, Stem Cells, 24, 671, 10.1634/stemcells.2005-0017 Atanasijevic, 2006, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin, Proc. Natl. Acad. Sci. U. S. A., 103, 14707, 10.1073/pnas.0606749103 Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300 Badawi, 2008, Metal-based selenium cationic surfactants as antitumor agents, Met. Ions Biol. Med., 10, 146 Bae, 2006, Creating patterned poly(dimethylsiloxane) surfaces with amoxicillin and poly(ethylene glycol), Langmuir, 22, 10277, 10.1021/la061571t Bakry, 2007, Medicinal applications of fullerenes, Int. J. Nanomedicine, 2, 639 Ballou, 2007, Sentinel lymph node imaging using quantum dots in mouse tumor models, Bioconjug. Chem., 18, 389, 10.1021/bc060261j Barrett, 2009, Dendrimers in medical nanotechnology, IEEE Eng. Med. Biol. Mag., 28, 12, 10.1109/MEMB.2008.931012 Bartczak, D., Kanaras, A.G., 2010. Diacetylene-containing ligand as a new capping agent for the preparation of water-soluble colloidal nanoparticles of remarkable stability. Langmuir (Electronic publication ahead of print). PMID: 20078089. Battah, 2007, Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates Mol, Cancer Ther., 6, 876, 10.1158/1535-7163.MCT-06-0359 Benny, 2008, An orally delivered small-molecule formulation with antiangiogenic and anticancer activity, Nat. Biotechnol., 26, 799, 10.1038/nbt1415 Bharali, 2009, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers, Int. J. Nanomedicine, 4, 1 Bianco, 2005, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol., 9, 674, 10.1016/j.cbpa.2005.10.005 Bianco, 2005, Biomedical applications of functionalized carbon nanotubes, Chem. Commun. (Camb), 571, 10.1039/b410943k Bible, 2009, The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA-particles, Biomaterials, 30, 2985, 10.1016/j.biomaterials.2009.02.012 Bible, 2009, Attachment of stem cells to scaffold particles for intra-cerebral transplantation, Nat. Protoc., 4, 1440, 10.1038/nprot.2009.156 Bjugstad, 2008, Biocompatibility of PEG-based hydrogels in primate brain, Cell Transplant., 17, 409, 10.3727/096368908784423292 Borm, 2006, Nanoparticles in drug delivery and environmental exposure: same size, same risks?, Nanomed., 1, 235, 10.2217/17435889.1.2.235 Bosi, 2003, Fullerene derivatives: an attractive tool for biological applications, Eur. J. Med. Chem., 38, 913, 10.1016/j.ejmech.2003.09.005 Braud, 1985, Poly(β-malic acid): a new polymeric drug-carrier. Evidence for degradation in vitro, Polym. Bull., 13, 293, 10.1007/BF00262111 Brekke, 2007, Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model, NeuroImage, 37, 769, 10.1016/j.neuroimage.2007.06.006 Brigger, 2002, Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting, J. Pharmacol. Exp. Ther., 303, 928, 10.1124/jpet.102.039669 Budde, 2009, Magnetic tagging of therapeutic cells for MRI, J. Nucl. Med., 50, 171, 10.2967/jnumed.108.053546 Bulte, 2007 Bulte, 1999, Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination, Proc. Natl. Acad. Sci. U. S. A., 96, 15256, 10.1073/pnas.96.26.15256 Bulte, 2002, Magnetically labeled glial cells as cellular MR contrast agents, Acad. Radiol., 9, S148, 10.1016/S1076-6332(03)80424-5 Cady, 2007, Optimized linkage and quenching strategies for quantum dot molecular beacons, Mol. Cell. Probes, 21, 116, 10.1016/j.mcp.2006.09.001 Cai, 2008, Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging, Nat. Protoc., 3, 89, 10.1038/nprot.2007.478 Cammas, 1999, Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices, Int. J. Biol. Macromol., 25, 273, 10.1016/S0141-8130(99)00042-2 2001 Chakraborty, 2010, Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents, Nanotechnology, 21, 105103, 10.1088/0957-4484/21/10/105103 Chang, 2008, Tracking bio-molecules in live cells using quantum dots, J. Biophotonics, 1, 287, 10.1002/jbio.200810029 Chang, 2008, Mass production and dynamic imaging of fluorescent nanodiamonds, Nat. Nanotechnol., 3, 284, 10.1038/nnano.2008.99 Chauhan, 2003, Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin, J. Control. Release, 90, 335, 10.1016/S0168-3659(03)00200-1 Chen, 2005, Quantum dots to monitor RNAi delivery and improve gene silencing, Nucleic Acids Res., 33, 190, 10.1093/nar/gni188 Chen, M., Pierstorff, E.D., Lam, R., Li, S.Y., Huang, H., Osawa, E., Ho, D., Jun 17, 2009. [Epub ahead of print]. ACS Nano. DOI: 10.1021/nn900480m. Cho, 2007, In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications, Biomaterials, 28, 1236, 10.1016/j.biomaterials.2006.10.002 Choi, 2006, Cervical lymph node metastases: MR imaging of gadofluorine M and monocrystalline iron oxide nanoparticle-47 in a rabbit model of head and neck cancer, Radiology, 241, 753, 10.1148/radiol.2413051979 Chrysochou, 2009, Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: critical review of the literature and UK experience, J. Magn. Reson. Imaging, 29, 887, 10.1002/jmri.21708 Corot, 2006, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv. Drug Deliv. Rev., 58, 1471, 10.1016/j.addr.2006.09.013 Craparo, 2008, Biocompatible polymeric micelles with polysorbate 80 for use in brain targeting, Nanotechnology, 48, 192 Cuenca, 2006, Emerging implications of nanotechnology on cancer diagnostics and therapeutics, Cancer, 107, 459, 10.1002/cncr.22035 Cunningham, 2005, Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles, Magn. Reson. Med., 53, 999, 10.1002/mrm.20477 Curry, 2007, Morphological and structural characterizations of dendrimer-mediated metallic Ti and Al thin film nanocomposites, Thin Solid Films, 515, 3567, 10.1016/j.tsf.2006.11.018 Dabholkar, 2006, Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux, Int. J. Pharm., 315, 148, 10.1016/j.ijpharm.2006.02.018 Daldrup-Link, 2003, Targeting of hematopoietic progenitor cells with MR contrast agents, Radiology, 228, 760, 10.1148/radiol.2283020322 Dayton, 2002, Targeted imaging using ultrasound, J. Magn. Reson. Imaging, 16, 362, 10.1002/jmri.10173 De Jong, 2008, Drug dlivery and nanoparticles: applications and hazards, Int. J. Nanomedicine, 3, 133, 10.2147/IJN.S596 de Vries, 2005, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy, Nat. Biotechnol., 23, 1407, 10.1038/nbt1154 Devarakonda, 2007, Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes, Int. J. Pharm., 345, 142, 10.1016/j.ijpharm.2007.05.039 Dhanikula, 2005, Preparation and characterization of water-soluble prodrug, liposomes and micelles of Paclitaxel, Curr. Drug Deliv., 2, 75, 10.2174/1567201052772861 Domurado, 2003, In vivo fates of degradable poly(β-malic acid), and of its precursor, malic acid, J. Bioact. Compat. Polym., 18, 23, 10.1177/0883911503018001003 Dufes, 2005, Dendrimers in gene delivery, Adv. Drug Deliv. Rev., 57, 2177, 10.1016/j.addr.2005.09.017 Duncan, 2003, The dawning era of polymer therapeutics, Nat. Rev. Drug Discov., 2, 347, 10.1038/nrd1088 Duncan, 2006, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 6, 688, 10.1038/nrc1958 Duvshani-Eshet, 2008, Effect of peptides bearing nuclear localization signals on therapeutic ultrasound mediated gene delivery, J. Gene Med., 10, 1150, 10.1002/jgm.1235 Ellis-Behnke, R.G., Teather, L.A., Schneider, G.E., So, K.f., 2007. Using Nanotechnology to Design Potential Therapies for CNS Regeneration, 13, 2519–2528 Enoki, 2009, Nanographene and nanodiamond; new members in the nanocarbon family, Chem. Asian J., 4, 796, 10.1002/asia.200800485 Esumi, 2005, Preparation of gold–gold/silver–dendrimer nanocomposites in the presence of benzoin in ethanol by UV irradiation, J. Colloid Interface Sci., 284, 199, 10.1016/j.jcis.2004.09.020 Farokhzad, 2009, Impact of nanotechnology on drug delivery, ACS Nano., 3, 16, 10.1021/nn900002m Fatouros, 2006, In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle, Radiology, 240, 756, 10.1148/radiol.2403051341 Ferrara, 2009, Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery, Acc. Chem. Res., 42, 881, 10.1021/ar8002442 Flynn, 2005, The pathway to commercialization for nanomedicine, Nanomed. Nanotechnol. Biol. Med., 1, 47, 10.1016/j.nano.2004.11.010 Fountaine, 2006, Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots, Mod. Pathol., 19, 1181, 10.1038/modpathol.3800628 Frank, 2003, Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents, Radiology, 228, 480, 10.1148/radiol.2281020638 Fu, 2007, Characterization and application of single flourescent ananodiamonds as cellular biomarkers, Proc. Natl. Acad. Sci. U. S. A, 104, 727, 10.1073/pnas.0605409104 Fujita, 2005, Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases, Breast Cancer Res., 7, 411, 10.1186/bcr1011 Fujita, 2006, Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis, Angiogenesis, 9, 183, 10.1007/s10456-006-9046-9 Fujita, 2007, Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(beta-l-malic acid), J. Control. Release, 122, 356, 10.1016/j.jconrel.2007.05.032 Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994 Gao, 2008, Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy, Ultrasonics, 48, 260, 10.1016/j.ultras.2007.11.002 Gasslmaier, 1997, Specificity and direction of depolymerization of beta-poly(L-malate) catalysed by polymalatase from Physarum polycephalum–fluorescence labeling at the carboxy-terminus of beta-poly(l-malate), Eur. J. Biochem., 250, 308, 10.1111/j.1432-1033.1997.0308a.x Gasslmaier, 2000, Synthetic substrates and inhibitors of beta-poly(l-malate)-hydrolase (polymalatase), Eur. J. Biochem., 267, 5101, 10.1046/j.1432-1327.2000.01573.x Genaidy, 2009, Health effects of exposure to carbon nanofibers: a systematic review, critical appraisal, meta analysis and research to practice perspectives, Sci. Total Environ., 407, 3686, 10.1016/j.scitotenv.2008.12.025 Giepmans, 2006, The fluorescent toolbox for assessing protein location and function, Science, 312, 217, 10.1126/science.1124618 Gilding, 1979, Biodegradable polymers for use in surgery—polyglycolic/poly (lactic acid) homo- and copolymers: 1, Polymer, 20, 1459, 10.1016/0032-3861(79)90009-0 Gillies, 2005, Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today, 10, 35, 10.1016/S1359-6446(04)03276-3 Goldberg, 2007, Nanostructured materials for applications in drug delivery and tissue engineering, J. Biomater. Sci. Polym. Ed., 18, 241, 10.1163/156856207779996931 Gong, 2006, Ag/SiO(2) core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools, Biosens. Bioelectron., 22, 1501, 10.1016/j.bios.2006.07.004 Gonzalez, 2002, Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo, Proc. Natl. Acad. Sci. U. S. A., 99, 16075, 10.1073/pnas.252649399 Guldi, 2000, Excited-state properties of C(60) fullerene derivatives, Acc. Chem. Res., 33, 695, 10.1021/ar990144m Gupta, 2007, Glaucoma as a neurodegenerative disease, Curr. Opin. Ophthalmol., 18, 110, 10.1097/ICU.0b013e3280895aea Hadinoto, 2009, Hollow spherical nanoparticulate aggregates as potential ultrosound contrast agent: shell thickness characterization, Drug Dev. Ind. Pharm., 10.1080/03639040902824845 Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., Hulsbergen van de Kaa, C., de la Rosette, J., Weissleder, R., 2003. Noninvasive detection of clincally occult lymph-node metastases in prostate cancer. 342(25), 2491–2499. Hashida, 2008, High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome, Exp. Eye Res., 86, 138, 10.1016/j.exer.2007.10.004 Hauck, 2009, In vivo quantum-dot toxicity assessment, Small, 6, 138, 10.1002/smll.200900626 Hecht, 2001, Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed., 40, 74, 10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C Hernandez-Sanchez, 2006, Synthesizing biofunctionalized nanoparticles to image cell signaling pathways, IEEE Trans. Nanobioscience, 5, 222, 10.1109/TNB.2006.886565 Hirai, 2006, Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging, Biochem. Biophys. Res. Commun., 353, 553, 10.1016/j.bbrc.2006.12.060 Holt, 2007, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philos. Transact. A Math. Phys. Eng. Sci., 365, 2845, 10.1098/rsta.2007.0005 Hu, 2007, Imaging of Vx-2 rabbit tumors with alpha(nu)beta(3)-integrin-targeted (111)In nanoparticles, Int. J. Cancer, 120, 1951, 10.1002/ijc.22581 Huang, 2007, Active nanodiamond hydrogels for chemotherapeutic delivery, Nano Lett., 7, 3305, 10.1021/nl071521o Huynh, 2005, Barriers to carrier mediated drug and gene delivery to brain tumors, J. Control. Release, 110, 236, 10.1016/j.jconrel.2005.09.053 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Johnston, 2009, The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity, Toxicol. Sci. Juliano, 2007, Challenges to macromolecular drug delivery, Biochem. Soc. Trans., 35, 41, 10.1042/BST0350041 Kabanov, 2002, Pluronic block copolymers for overcoming drug resistance in cancer, Adv. Drug Deliv. Rev., 54, 759, 10.1016/S0169-409X(02)00047-9 Kabanov, 2005, Polymer genomics: shifting the gene and drug delivery paradigms, J. Control. Release, 101, 259, 10.1016/j.jconrel.2004.07.009 Klumpp, 2006, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, Biochem. Biophys. Acta, 1758, 404, 10.1016/j.bbamem.2005.10.008 Kamruzzaman, 2007, Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes, Biomaterials, 4, 710, 10.1016/j.biomaterials.2006.09.014 Kateb, 2007, Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors, NeuroImage, 37, S9, 10.1016/j.neuroimage.2007.03.078 Kato, 2003, Lanthanoid endohedral metallofullerenols for MRI contrast agents, J. Am. Chem. Soc., 125, 4391, 10.1021/ja027555+ Kattumuri, 2007, Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies, Small, 3, 333, 10.1002/smll.200600427 Keil, 2005, Effect of surface modified liposomes on the aggregation of platelets and tumor cells, Thromb. Haemost., 94, 404, 10.1160/TH04-12-0810 Khazenzon, 2003, Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro, Mol. Cancer Ther., 2, 985 Kircher, 2003, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation, Cancer Res., 63, 8122 Kirpotin, 2006, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res., 66, 6732, 10.1158/0008-5472.CAN-05-4199 Kirsch, 1991, Basic principles of magnetic resonance contrast agents, Top. Magn. Reson. Imaging, 3, 1, 10.1097/00002142-199103000-00003 Kobayashi, 2005, Nano-sized MRI contrast agents with dendrimer cores, Adv. Drug Deliv. Rev., 57, 2271, 10.1016/j.addr.2005.09.016 Koo, 2005, Role of nanotechnology in targeted drug delivery and imaging: a concise review, Nanomed. Nanotechnol. Biol. Med., 1, 193, 10.1016/j.nano.2005.06.004 Koo, 2006, Brain cancer diagnosis and therapy with nanoplatforms, Adv. Drug Deliv. Rev., 58, 1556, 10.1016/j.addr.2006.09.012 Korherr, 1995, Poly(β-l-malate) hydrolase from plasmodia of Physarum polycephalum, Can. J. Microbiol., 41, 192, 10.1139/m95-187 Koruga, 1996, Fullerene C60: properties and possible applications, Trans. Tech. Publ. Mat. Sci. Forum, 214, 49, 10.4028/www.scientific.net/MSF.214.49 Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0 Krueger, 2008, New carbon materials: biological applications of functionalized nanodiamond materials, Chemistry, 14, 1382, 10.1002/chem.200700987 Laakkonen, 2008, Peptide targeting of tumor lymph vessels, Ann. N.Y. Acad. Sci., 1131, 37, 10.1196/annals.1413.003 Lai, 2007, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, J. Control. Release, 122, 39, 10.1016/j.jconrel.2007.06.012 Lam, 2008, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution, ACS Nano., 2, 2095, 10.1021/nn800465x Langa, F. and Nierengarten, J., 2007. Fullerenes: Principles and Applications. RSC Nanoscience and Nanotechnology Series. Royal Society of Chemistry; 1st ed., ISBN-10: 0854045511. Lee, 2002, Water-soluble aliphatic polyesters: poly(malic acid)s, 3a, 75 Lee, 2006, Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-l-malic acid) for drug delivery, Bioconjug. Chem., 17, 317, 10.1021/bc0502457 Lee, 2006, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma, Angew. Chem. Int. Ed., 45, 8160, 10.1002/anie.200603052 Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467 Li, 2002, Mechanistic studies of a calcium-dependent MRI contrast agent, Inorg. Chem., 41, 4018, 10.1021/ic0200390 Lin, 2008, Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications, IEEE Trans. Nanobioscience, 7, 298, 10.1109/TNB.2008.2011864 Liu, 2007, Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro, Phys. Med. Biol., 52, 4739, 10.1088/0031-9155/52/16/002 Liu, 2009, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells, Biomaterials, 30, 4249, 10.1016/j.biomaterials.2009.04.056 Ljubimova, 2001, Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis, Cancer Res., 61, 5601 Ljubimova, 2004, Association between laminin-8 and glial tumor grade, recurrence, and patient survival, Cancer, 101, 604, 10.1002/cncr.20397 Ljubimova, 2008, Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multi-targeting drug delivery, Nanomedicine, 3, 247, 10.2217/17435889.3.2.247 Ljubimova, 2008, Nanoconjugate based on polymalic acid for tumor targeting, Chem. Biol. Interact., 171, 195, 10.1016/j.cbi.2007.01.015 Lockman, 2002, Nanoparticle technology for drug delivery across the blood–brain barrier, Drug Dev. Ind. Pharm., 28, 1, 10.1081/DDC-120001481 Lu, 2007, Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats, Int J Cancer, 120, 420, 10.1002/ijc.22296 Luo, 2002, Cancer-targeted polymeric drugs, Curr. Cancer Drug Targets, 2, 209, 10.2174/1568009023333836 MacDonald, 2005, Collagen–carbon nanotube composite materials as scaffolds in tissue engineering, J. Biomed. Mater. Res. A, 74, 489, 10.1002/jbm.a.30386 Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5 Maeda, 2003, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications, Int. Inmunopharmacol., 3, 319, 10.1016/S1567-5769(02)00271-0 Magnitsky, 2005, In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain, NeuroImage, 26, 744, 10.1016/j.neuroimage.2005.02.029 McMahon, 2008, New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACSET) contrast agents for MRI, Magn. Reson. Med., 60, 803, 10.1002/mrm.21683 Michalet, 2005, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307, 538, 10.1126/science.1104274 Milhem, 2000, Polyamidoamine Starburst® dendrimers as solubility enhancers, Int. J. Pharm., 197, 239, 10.1016/S0378-5173(99)00463-9 Miller, 2009, Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate, Angew. Chem. Int. Ed. Engl., 48, 2949, 10.1002/anie.200805133 Miner, 1997, The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform, J. Cell Biol., 137, 685, 10.1083/jcb.137.3.685 Modo, 2002, Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging, NeuroImage, 17, 803, 10.1006/nimg.2002.1194 Moffat, 2003, A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI, Mol. Imaging, 2, 324, 10.1162/153535003322750664 Murphy, 1970, Variation in the size of antibody sites for the poly-l-aspartate hapten during the immune response, J. Immunol., 105, 460, 10.4049/jimmunol.105.2.460 Murugesan, 2006, Blood compatible carbon nanotubes—nano-based neoproteoglycans, Langmuir, 22, 3461, 10.1021/la0534468 Nasibulin, 2007, A novel hybrid carbon material, Nat. Nanotechnol., 2, 156, 10.1038/nnano.2007.37 Neuwelt, 2009, Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?, Kidney Int., 75, 465, 10.1038/ki.2008.496 Nori, 2005, Intracellular targeting of polymer-bound drugs for cancer chemotherapy, Adv. Drug Deliv. Rev., 57, 609, 10.1016/j.addr.2004.10.006 Odemir, 2009, Genome–environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics, OMICS, 13, 1, 10.1089/omi.2009.0013 Oh, 2004, Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic pluronic(R) block copolymers, J. Control. Release, 94, 411, 10.1016/j.jconrel.2003.10.018 Oliver, 2006, MAGfect: a novel liposome formulation for MRI labelling and visualization of cells, Org. Biomol. Chem., 4, 3489, 10.1039/b605394g Osawa, 1970, C60: Buckminsterfullerene, Kagaku, 25, 854 Pancrazio, 2008, Neural interfaces at the nanoscale, Nanomed., 3, 823, 10.2217/17435889.3.6.823 Partlow, 2007, 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons, FASEB J., 21, 1647, 10.1096/fj.06-6505com Patarroyo, 2002, Laminin isoforms in tumor invasion, angiogenesis and metastasis, Semin. Cancer Biol., 12, 197, 10.1016/S1044-579X(02)00023-8 Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2, 761, 10.1038/nnano.2007.387 Penfield, 2008, Nephrogenic systemic fibrosis and the use of gadolinium-based contrast agents, Pediatr. Nephrol., 23, 2121, 10.1007/s00467-008-0862-6 Peng, 2008, Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy, Int. J. Nanomedicine, 3, 311 Perazella, 2007, Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link, Clin. J. Am. Soc. Nephrol., 2, 200, 10.2215/CJN.00030107 Peterson, 2003, HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer, Adv. Exp. Med. Biol., 519, 101, 10.1007/0-306-47932-X_7 Pinhassi, 2010, Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells, Biomacromolecules, 11, 294, 10.1021/bm900853z Ponce, 2007, Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects, J. Natl. Cancer Inst., 99, 53, 10.1093/jnci/djk005 Portilla-Arias, 2008, Biodegradable nanoparticles of partially methylated fungal poly(beta-l-malic acid) as a novel protein delivery carrier, Macromol. Biosci., 8, 551, 10.1002/mabi.200700249 Portilla-Arias, 2008, Synthesis, hydrodegradation and drug releasing properties of methyl esters of fungal poly(β,l-malic acid), Macromol. Biosci., 8, 540, 10.1002/mabi.200700248 Prato, 2008, Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res., 41, 60, 10.1021/ar700089b Prinzbach, 2000, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20, Nature, 407, 60, 10.1038/35024037 Prinzen, 2007, Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots, Nano Lett., 7, 93, 10.1021/nl062226r Ravi, 2007, Fullerene containing polymers: a review on their synthesis and supramolecular behavior in solution, J. Nanosci. Nanotechnol., 7, 1176, 10.1166/jnn.2007.456 Reddy, 2006, Vascular targeted nanoparticles for imaging and treatment of brain tumors, Clin. Cancer Res., 12, 6677, 10.1158/1078-0432.CCR-06-0946 Reiss, 2009, Core/Shell semiconductor nanocrystals, Small, 5, 154, 10.1002/smll.200800841 Reubi, 2008, Peptide-based probes for cancer imaging, J. Nucl. Med., 49, 1735, 10.2967/jnumed.108.053041 2003, 468 Roe, 2008, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, J. Antimicrob. Chemother., 1 Sahoo, 2003, Nanotech approaches to drug delivery and imaging, Drug Disc. Today, 8, 1112, 10.1016/S1359-6446(03)02903-9 Saito, 2007, Delivery of doxorubicin from biodegradable PEG hyydrogels having Schiff based linkages, J. Bioact. Compat. Polym., 22, 589, 10.1177/0883911507084653 Salvador-Morales, 2006, Complement activation and protein adsorption by carbon nanotubes, Mol. Immunol., 43, 193, 10.1016/j.molimm.2005.02.006 Sanchez, 2009, Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?, Nanomed. Nanobiotechnol., 1, 511, 10.1002/wnan.41 Sano, 2001, Synthesis of carbon ‘onions’ in water, Nature, 29, 506, 10.1038/35107141 Satchi-Fainaro, 2004, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470, Nat. Med., 10, 255, 10.1038/nm1002 Satoh, 2002, Effects of various thiol molecules added on morphology of dendrimer–gold nanocomposites, J. Colloid Interface Sci., 255, 312, 10.1006/jcis.2002.8585 Schroeder, 1999, Body distribution of 3HH-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after I.V. injections to mice, Life Sci., 66, 495, 10.1016/S0024-3205(99)00619-0 Shah, 2000, DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers, Int. J. Pharm., 208, 41, 10.1016/S0378-5173(00)00534-2 Shaner, 2005, A guide to choosing fluorescent proteins, Nat. Methods, 2, 905, 10.1038/nmeth819 Shi, 2007, Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging, Small, 3, 1245, 10.1002/smll.200700054 Shi, 2008, Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors, Adv. Mater., 20, 1671, 10.1002/adma.200702770 Silva, 2007, Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier, Surg. Neurol., 67, 113, 10.1016/j.surneu.2006.08.033 Singh, 2009, Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol., 86, 215, 10.1016/j.yexmp.2008.12.004 Sofou, 2008, Antibody-targeted liposomes in cancer therapy and imaging, Expert Opin. Drug Deliv., 5, 189, 10.1517/17425247.5.2.189 Sperling, 2008, Biological applications of gold nanoparticles, Chem. Soc. Rev., 37, 1896, 10.1039/b712170a Steiniger, 2004, Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles, Int. J. Cancer, 109, 759, 10.1002/ijc.20048 Stoermer, 2006, Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays, J. Am. Chem. Soc., 128, 16892, 10.1021/ja0658261 Su, 2007, Nanoshell magnetic resonance imaging contrast agents, J. Am. Chem. Soc., 129, 2139, 10.1021/ja0672066 Sukhishvili, 2000, Materials science. Diffusion of a polymer ‘pancake’, Nature, 406, 146, 10.1038/35018166 Sun, 2005, Intracellular uptake of folate receptor targeted superparamagnetic nanoparticles for enhanced tumor detection by MRI, NSTI-Nanotech., 1, 74 Sykova, 2005, Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord, Ann. N.Y. Acad. Sci., 1049, 146, 10.1196/annals.1334.014 Szerlip, 2007, Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles, J. Neurosurg., 107, 560, 10.3171/JNS-07/09/0560 Talanov, 2006, Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging, Nano Lett., 6, 1459, 10.1021/nl060765q Tan, L., Li, Y., Drake, T.J., Moroz, L., Wang, K., Li, J., Munteanu, A., James Yang, C., Martinez, K., Tan, W., 2005. Molecular beacons for bioanalytical applications. 130 (7), 1002–1005. Tartis, 2006, Therapeutic effect of paclitaxel-containing ultrasound contrast agents, Ultrasound Med. Biol., 32, 1771, 10.1016/j.ultrasmedbio.2006.03.017 Tekade, 2009, Dendrimers in oncology: an expanding horizon, Chem. Rev., 109, 49, 10.1021/cr068212n Terreno, 2008, Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications, Chem. Biodivers., 5, 1901, 10.1002/cbdv.200890178 Thyboll, 2002, Deletion of the laminin alpha4 chain leads to impaired microvessel maturation, Mol. Cell. Biol., 22, 1194, 10.1128/MCB.22.4.1194-1202.2002 Tomalia, 2007, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, Biochem. Soc. Trans., 35, 61, 10.1042/BST0350061 Torchilin, 2003, Peptide and protein drug delivery to and into tumors: challenges and solutions, Drug Discov. Today, 8, 259, 10.1016/S1359-6446(03)02623-0 True, 2007, Quantum dots for molecular pathology: their time has arrived, J. Mol. Diagn., 9, 7, 10.2353/jmoldx.2007.060186 Uchida, 2006, Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles, J. Am. Chem. Soc., 128, 16626, 10.1021/ja0655690 van Nostrum, 2004, Polymeric micelles to deliver photosensitizers for photodynamic therapy, Adv. Drug. Delivery Rev., 56, 9, 10.1016/j.addr.2003.07.013 Vaijayanthimala, 2009, Functionalized fluorescent nanodiamonds for biomedical applications, Nanomed., 4, 47, 10.2217/17435889.4.1.47 van Kasteren, 2009, Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease, Proc. Natl. Acad. Sci. U. S. A., 106, 18, 10.1073/pnas.0806787106 Vinogradov, 2004, Nanogels for oligonucleotide delivery to the brain, Bioconjug. Chem., 15, 50, 10.1021/bc034164r Vinogradov, 2004, Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides, J. Drug Target., 12, 517, 10.1080/10611860400011927 Visser, 2005, Targeting liposomes with protein drugs to the blood–brain barrier in vitro, Eur. J. Pharm. Sci., 25, 299, 10.1016/j.ejps.2005.03.008 Wang, 1993, The properties and function of gamma-glutamyl hydrolase and poly-gamma-glutamate, Adv. Enzyme Regul., 33, 207, 10.1016/0065-2571(93)90019-A Wang, 2001, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol., 11, 2319, 10.1007/s003300100908 Winter, 2006, Targeted PARACEST nanoparticle contrast agent for the detection of fibrin, Magn. Reson. Med., 56, 1384, 10.1002/mrm.21093 Winter, 2003, Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging, Cancer Res., 63, 5838 Xiaoling, 2008, Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging, Bioconjug. Chem., 19, 2189, 10.1021/bc8002698 Xing, 2009, Nanodiamonds for nanomedicine, Nanomedicine, 4, 207, 10.2217/17435889.4.2.207 Yang, 2008, Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents, Phys. Med. Biol., 53, 6129, 10.1088/0031-9155/53/21/016 Yong, 2007, Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells, Nano Lett., 7, 761, 10.1021/nl063031m Yu, 2007, Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation, J. Fluoresc., 17, 243, 10.1007/s10895-007-0163-7 Zagal, 2009, Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis, J Nanosci. Nanotechnol., 9, 2201, 10.1166/jnn.2009.SE15 Zhang, 2006, Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens, BMC Neurosci., 7, 49, 10.1186/1471-2202-7-49 Zhang, 2009, Modular functionalization of carbon nanotubes and fullerenes, J. Am. Chem. Soc., 131, 8446, 10.1021/ja810049z Zhou, 2004, Deletion of laminin-8 results in increased tumor neovascularization and metastasis in mice, Cancer Res., 64, 4059, 10.1158/0008-5472.CAN-04-0291 Zolnik, 2009, Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs, Adv. Drug Deliv. Rev., 61, 422, 10.1016/j.addr.2009.03.006