Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?
Tài liệu tham khảo
Abes, 2009, Peptide-based delivery of steric-block PNA oligonucleotides, Methods Mol. Biol., 480, 85, 10.1007/978-1-59745-429-2_6
Adams, 2003, Amphiphilic block copolymers for drug delivery, J. Pharm. Sci., 92, 1343, 10.1002/jps.10397
Aillon, 2009, Effects of nanomaterial physicochemical properties on in vivo toxicity, Adv. Drug Deliv. Rev., 61, 457, 10.1016/j.addr.2009.03.010
Amoh, 2008, Color-coded fluorescent protein imaging of angiogenesis: the AngioMouse models, Curr. Pharm. Des., 14, 3810, 10.2174/138161208786898644
Amsharov, 2009, Synthesis of a higher fullerene precursor-an “unrolled” C84 fullerene, Chem. Commun. (Camb.), 19, 2691, 10.1039/b901496a
Anderson, 2005, Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model, Blood, 105, 420, 10.1182/blood-2004-06-2222
Andrievsky, 2009, Peculiarities of the antioxidant and radioprotective effects of hydrated c(60) fullerene nanostructures in vitro and in vivo, Free Radic. Biol. Med., 10.1016/j.freeradbiomed.2009.06.016
Arbab, 2004, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI, Blood, 104, 1217, 10.1182/blood-2004-02-0655
Arbab, 2005, A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging, NMR Biomed., 18, 383, 10.1002/nbm.970
Arbab, 2005, Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells, NMR Biomed., 18, 553, 10.1002/nbm.991
Arbab, 2005, Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis, Stem Cells, 24, 671, 10.1634/stemcells.2005-0017
Atanasijevic, 2006, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin, Proc. Natl. Acad. Sci. U. S. A., 103, 14707, 10.1073/pnas.0606749103
Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300
Badawi, 2008, Metal-based selenium cationic surfactants as antitumor agents, Met. Ions Biol. Med., 10, 146
Bae, 2006, Creating patterned poly(dimethylsiloxane) surfaces with amoxicillin and poly(ethylene glycol), Langmuir, 22, 10277, 10.1021/la061571t
Bakry, 2007, Medicinal applications of fullerenes, Int. J. Nanomedicine, 2, 639
Ballou, 2007, Sentinel lymph node imaging using quantum dots in mouse tumor models, Bioconjug. Chem., 18, 389, 10.1021/bc060261j
Barrett, 2009, Dendrimers in medical nanotechnology, IEEE Eng. Med. Biol. Mag., 28, 12, 10.1109/MEMB.2008.931012
Bartczak, D., Kanaras, A.G., 2010. Diacetylene-containing ligand as a new capping agent for the preparation of water-soluble colloidal nanoparticles of remarkable stability. Langmuir (Electronic publication ahead of print). PMID: 20078089.
Battah, 2007, Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates Mol, Cancer Ther., 6, 876, 10.1158/1535-7163.MCT-06-0359
Benny, 2008, An orally delivered small-molecule formulation with antiangiogenic and anticancer activity, Nat. Biotechnol., 26, 799, 10.1038/nbt1415
Bharali, 2009, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers, Int. J. Nanomedicine, 4, 1
Bianco, 2005, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol., 9, 674, 10.1016/j.cbpa.2005.10.005
Bianco, 2005, Biomedical applications of functionalized carbon nanotubes, Chem. Commun. (Camb), 571, 10.1039/b410943k
Bible, 2009, The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA-particles, Biomaterials, 30, 2985, 10.1016/j.biomaterials.2009.02.012
Bible, 2009, Attachment of stem cells to scaffold particles for intra-cerebral transplantation, Nat. Protoc., 4, 1440, 10.1038/nprot.2009.156
Bjugstad, 2008, Biocompatibility of PEG-based hydrogels in primate brain, Cell Transplant., 17, 409, 10.3727/096368908784423292
Borm, 2006, Nanoparticles in drug delivery and environmental exposure: same size, same risks?, Nanomed., 1, 235, 10.2217/17435889.1.2.235
Bosi, 2003, Fullerene derivatives: an attractive tool for biological applications, Eur. J. Med. Chem., 38, 913, 10.1016/j.ejmech.2003.09.005
Braud, 1985, Poly(β-malic acid): a new polymeric drug-carrier. Evidence for degradation in vitro, Polym. Bull., 13, 293, 10.1007/BF00262111
Brekke, 2007, Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model, NeuroImage, 37, 769, 10.1016/j.neuroimage.2007.06.006
Brigger, 2002, Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting, J. Pharmacol. Exp. Ther., 303, 928, 10.1124/jpet.102.039669
Budde, 2009, Magnetic tagging of therapeutic cells for MRI, J. Nucl. Med., 50, 171, 10.2967/jnumed.108.053546
Bulte, 2007
Bulte, 1999, Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination, Proc. Natl. Acad. Sci. U. S. A., 96, 15256, 10.1073/pnas.96.26.15256
Bulte, 2002, Magnetically labeled glial cells as cellular MR contrast agents, Acad. Radiol., 9, S148, 10.1016/S1076-6332(03)80424-5
Cady, 2007, Optimized linkage and quenching strategies for quantum dot molecular beacons, Mol. Cell. Probes, 21, 116, 10.1016/j.mcp.2006.09.001
Cai, 2008, Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging, Nat. Protoc., 3, 89, 10.1038/nprot.2007.478
Cammas, 1999, Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices, Int. J. Biol. Macromol., 25, 273, 10.1016/S0141-8130(99)00042-2
2001
Chakraborty, 2010, Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents, Nanotechnology, 21, 105103, 10.1088/0957-4484/21/10/105103
Chang, 2008, Tracking bio-molecules in live cells using quantum dots, J. Biophotonics, 1, 287, 10.1002/jbio.200810029
Chang, 2008, Mass production and dynamic imaging of fluorescent nanodiamonds, Nat. Nanotechnol., 3, 284, 10.1038/nnano.2008.99
Chauhan, 2003, Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin, J. Control. Release, 90, 335, 10.1016/S0168-3659(03)00200-1
Chen, 2005, Quantum dots to monitor RNAi delivery and improve gene silencing, Nucleic Acids Res., 33, 190, 10.1093/nar/gni188
Chen, M., Pierstorff, E.D., Lam, R., Li, S.Y., Huang, H., Osawa, E., Ho, D., Jun 17, 2009. [Epub ahead of print]. ACS Nano. DOI: 10.1021/nn900480m.
Cho, 2007, In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications, Biomaterials, 28, 1236, 10.1016/j.biomaterials.2006.10.002
Choi, 2006, Cervical lymph node metastases: MR imaging of gadofluorine M and monocrystalline iron oxide nanoparticle-47 in a rabbit model of head and neck cancer, Radiology, 241, 753, 10.1148/radiol.2413051979
Chrysochou, 2009, Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: critical review of the literature and UK experience, J. Magn. Reson. Imaging, 29, 887, 10.1002/jmri.21708
Corot, 2006, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv. Drug Deliv. Rev., 58, 1471, 10.1016/j.addr.2006.09.013
Craparo, 2008, Biocompatible polymeric micelles with polysorbate 80 for use in brain targeting, Nanotechnology, 48, 192
Cuenca, 2006, Emerging implications of nanotechnology on cancer diagnostics and therapeutics, Cancer, 107, 459, 10.1002/cncr.22035
Cunningham, 2005, Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles, Magn. Reson. Med., 53, 999, 10.1002/mrm.20477
Curry, 2007, Morphological and structural characterizations of dendrimer-mediated metallic Ti and Al thin film nanocomposites, Thin Solid Films, 515, 3567, 10.1016/j.tsf.2006.11.018
Dabholkar, 2006, Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux, Int. J. Pharm., 315, 148, 10.1016/j.ijpharm.2006.02.018
Daldrup-Link, 2003, Targeting of hematopoietic progenitor cells with MR contrast agents, Radiology, 228, 760, 10.1148/radiol.2283020322
Dayton, 2002, Targeted imaging using ultrasound, J. Magn. Reson. Imaging, 16, 362, 10.1002/jmri.10173
De Jong, 2008, Drug dlivery and nanoparticles: applications and hazards, Int. J. Nanomedicine, 3, 133, 10.2147/IJN.S596
de Vries, 2005, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy, Nat. Biotechnol., 23, 1407, 10.1038/nbt1154
Devarakonda, 2007, Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes, Int. J. Pharm., 345, 142, 10.1016/j.ijpharm.2007.05.039
Dhanikula, 2005, Preparation and characterization of water-soluble prodrug, liposomes and micelles of Paclitaxel, Curr. Drug Deliv., 2, 75, 10.2174/1567201052772861
Domurado, 2003, In vivo fates of degradable poly(β-malic acid), and of its precursor, malic acid, J. Bioact. Compat. Polym., 18, 23, 10.1177/0883911503018001003
Dufes, 2005, Dendrimers in gene delivery, Adv. Drug Deliv. Rev., 57, 2177, 10.1016/j.addr.2005.09.017
Duncan, 2003, The dawning era of polymer therapeutics, Nat. Rev. Drug Discov., 2, 347, 10.1038/nrd1088
Duncan, 2006, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 6, 688, 10.1038/nrc1958
Duvshani-Eshet, 2008, Effect of peptides bearing nuclear localization signals on therapeutic ultrasound mediated gene delivery, J. Gene Med., 10, 1150, 10.1002/jgm.1235
Ellis-Behnke, R.G., Teather, L.A., Schneider, G.E., So, K.f., 2007. Using Nanotechnology to Design Potential Therapies for CNS Regeneration, 13, 2519–2528
Enoki, 2009, Nanographene and nanodiamond; new members in the nanocarbon family, Chem. Asian J., 4, 796, 10.1002/asia.200800485
Esumi, 2005, Preparation of gold–gold/silver–dendrimer nanocomposites in the presence of benzoin in ethanol by UV irradiation, J. Colloid Interface Sci., 284, 199, 10.1016/j.jcis.2004.09.020
Farokhzad, 2009, Impact of nanotechnology on drug delivery, ACS Nano., 3, 16, 10.1021/nn900002m
Fatouros, 2006, In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle, Radiology, 240, 756, 10.1148/radiol.2403051341
Ferrara, 2009, Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery, Acc. Chem. Res., 42, 881, 10.1021/ar8002442
Flynn, 2005, The pathway to commercialization for nanomedicine, Nanomed. Nanotechnol. Biol. Med., 1, 47, 10.1016/j.nano.2004.11.010
Fountaine, 2006, Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots, Mod. Pathol., 19, 1181, 10.1038/modpathol.3800628
Frank, 2003, Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents, Radiology, 228, 480, 10.1148/radiol.2281020638
Fu, 2007, Characterization and application of single flourescent ananodiamonds as cellular biomarkers, Proc. Natl. Acad. Sci. U. S. A, 104, 727, 10.1073/pnas.0605409104
Fujita, 2005, Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases, Breast Cancer Res., 7, 411, 10.1186/bcr1011
Fujita, 2006, Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis, Angiogenesis, 9, 183, 10.1007/s10456-006-9046-9
Fujita, 2007, Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(beta-l-malic acid), J. Control. Release, 122, 356, 10.1016/j.jconrel.2007.05.032
Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994
Gao, 2008, Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy, Ultrasonics, 48, 260, 10.1016/j.ultras.2007.11.002
Gasslmaier, 1997, Specificity and direction of depolymerization of beta-poly(L-malate) catalysed by polymalatase from Physarum polycephalum–fluorescence labeling at the carboxy-terminus of beta-poly(l-malate), Eur. J. Biochem., 250, 308, 10.1111/j.1432-1033.1997.0308a.x
Gasslmaier, 2000, Synthetic substrates and inhibitors of beta-poly(l-malate)-hydrolase (polymalatase), Eur. J. Biochem., 267, 5101, 10.1046/j.1432-1327.2000.01573.x
Genaidy, 2009, Health effects of exposure to carbon nanofibers: a systematic review, critical appraisal, meta analysis and research to practice perspectives, Sci. Total Environ., 407, 3686, 10.1016/j.scitotenv.2008.12.025
Giepmans, 2006, The fluorescent toolbox for assessing protein location and function, Science, 312, 217, 10.1126/science.1124618
Gilding, 1979, Biodegradable polymers for use in surgery—polyglycolic/poly (lactic acid) homo- and copolymers: 1, Polymer, 20, 1459, 10.1016/0032-3861(79)90009-0
Gillies, 2005, Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today, 10, 35, 10.1016/S1359-6446(04)03276-3
Goldberg, 2007, Nanostructured materials for applications in drug delivery and tissue engineering, J. Biomater. Sci. Polym. Ed., 18, 241, 10.1163/156856207779996931
Gong, 2006, Ag/SiO(2) core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools, Biosens. Bioelectron., 22, 1501, 10.1016/j.bios.2006.07.004
Gonzalez, 2002, Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo, Proc. Natl. Acad. Sci. U. S. A., 99, 16075, 10.1073/pnas.252649399
Guldi, 2000, Excited-state properties of C(60) fullerene derivatives, Acc. Chem. Res., 33, 695, 10.1021/ar990144m
Gupta, 2007, Glaucoma as a neurodegenerative disease, Curr. Opin. Ophthalmol., 18, 110, 10.1097/ICU.0b013e3280895aea
Hadinoto, 2009, Hollow spherical nanoparticulate aggregates as potential ultrosound contrast agent: shell thickness characterization, Drug Dev. Ind. Pharm., 10.1080/03639040902824845
Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., Hulsbergen van de Kaa, C., de la Rosette, J., Weissleder, R., 2003. Noninvasive detection of clincally occult lymph-node metastases in prostate cancer. 342(25), 2491–2499.
Hashida, 2008, High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome, Exp. Eye Res., 86, 138, 10.1016/j.exer.2007.10.004
Hauck, 2009, In vivo quantum-dot toxicity assessment, Small, 6, 138, 10.1002/smll.200900626
Hecht, 2001, Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed., 40, 74, 10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C
Hernandez-Sanchez, 2006, Synthesizing biofunctionalized nanoparticles to image cell signaling pathways, IEEE Trans. Nanobioscience, 5, 222, 10.1109/TNB.2006.886565
Hirai, 2006, Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging, Biochem. Biophys. Res. Commun., 353, 553, 10.1016/j.bbrc.2006.12.060
Holt, 2007, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philos. Transact. A Math. Phys. Eng. Sci., 365, 2845, 10.1098/rsta.2007.0005
Hu, 2007, Imaging of Vx-2 rabbit tumors with alpha(nu)beta(3)-integrin-targeted (111)In nanoparticles, Int. J. Cancer, 120, 1951, 10.1002/ijc.22581
Huang, 2007, Active nanodiamond hydrogels for chemotherapeutic delivery, Nano Lett., 7, 3305, 10.1021/nl071521o
Huynh, 2005, Barriers to carrier mediated drug and gene delivery to brain tumors, J. Control. Release, 110, 236, 10.1016/j.jconrel.2005.09.053
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Johnston, 2009, The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity, Toxicol. Sci.
Juliano, 2007, Challenges to macromolecular drug delivery, Biochem. Soc. Trans., 35, 41, 10.1042/BST0350041
Kabanov, 2002, Pluronic block copolymers for overcoming drug resistance in cancer, Adv. Drug Deliv. Rev., 54, 759, 10.1016/S0169-409X(02)00047-9
Kabanov, 2005, Polymer genomics: shifting the gene and drug delivery paradigms, J. Control. Release, 101, 259, 10.1016/j.jconrel.2004.07.009
Klumpp, 2006, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, Biochem. Biophys. Acta, 1758, 404, 10.1016/j.bbamem.2005.10.008
Kamruzzaman, 2007, Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes, Biomaterials, 4, 710, 10.1016/j.biomaterials.2006.09.014
Kateb, 2007, Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors, NeuroImage, 37, S9, 10.1016/j.neuroimage.2007.03.078
Kato, 2003, Lanthanoid endohedral metallofullerenols for MRI contrast agents, J. Am. Chem. Soc., 125, 4391, 10.1021/ja027555+
Kattumuri, 2007, Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies, Small, 3, 333, 10.1002/smll.200600427
Keil, 2005, Effect of surface modified liposomes on the aggregation of platelets and tumor cells, Thromb. Haemost., 94, 404, 10.1160/TH04-12-0810
Khazenzon, 2003, Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro, Mol. Cancer Ther., 2, 985
Kircher, 2003, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation, Cancer Res., 63, 8122
Kirpotin, 2006, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res., 66, 6732, 10.1158/0008-5472.CAN-05-4199
Kirsch, 1991, Basic principles of magnetic resonance contrast agents, Top. Magn. Reson. Imaging, 3, 1, 10.1097/00002142-199103000-00003
Kobayashi, 2005, Nano-sized MRI contrast agents with dendrimer cores, Adv. Drug Deliv. Rev., 57, 2271, 10.1016/j.addr.2005.09.016
Koo, 2005, Role of nanotechnology in targeted drug delivery and imaging: a concise review, Nanomed. Nanotechnol. Biol. Med., 1, 193, 10.1016/j.nano.2005.06.004
Koo, 2006, Brain cancer diagnosis and therapy with nanoplatforms, Adv. Drug Deliv. Rev., 58, 1556, 10.1016/j.addr.2006.09.012
Korherr, 1995, Poly(β-l-malate) hydrolase from plasmodia of Physarum polycephalum, Can. J. Microbiol., 41, 192, 10.1139/m95-187
Koruga, 1996, Fullerene C60: properties and possible applications, Trans. Tech. Publ. Mat. Sci. Forum, 214, 49, 10.4028/www.scientific.net/MSF.214.49
Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0
Krueger, 2008, New carbon materials: biological applications of functionalized nanodiamond materials, Chemistry, 14, 1382, 10.1002/chem.200700987
Laakkonen, 2008, Peptide targeting of tumor lymph vessels, Ann. N.Y. Acad. Sci., 1131, 37, 10.1196/annals.1413.003
Lai, 2007, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, J. Control. Release, 122, 39, 10.1016/j.jconrel.2007.06.012
Lam, 2008, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution, ACS Nano., 2, 2095, 10.1021/nn800465x
Langa, F. and Nierengarten, J., 2007. Fullerenes: Principles and Applications. RSC Nanoscience and Nanotechnology Series. Royal Society of Chemistry; 1st ed., ISBN-10: 0854045511.
Lee, 2002, Water-soluble aliphatic polyesters: poly(malic acid)s, 3a, 75
Lee, 2006, Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-l-malic acid) for drug delivery, Bioconjug. Chem., 17, 317, 10.1021/bc0502457
Lee, 2006, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma, Angew. Chem. Int. Ed., 45, 8160, 10.1002/anie.200603052
Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467
Li, 2002, Mechanistic studies of a calcium-dependent MRI contrast agent, Inorg. Chem., 41, 4018, 10.1021/ic0200390
Lin, 2008, Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications, IEEE Trans. Nanobioscience, 7, 298, 10.1109/TNB.2008.2011864
Liu, 2007, Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro, Phys. Med. Biol., 52, 4739, 10.1088/0031-9155/52/16/002
Liu, 2009, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells, Biomaterials, 30, 4249, 10.1016/j.biomaterials.2009.04.056
Ljubimova, 2001, Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis, Cancer Res., 61, 5601
Ljubimova, 2004, Association between laminin-8 and glial tumor grade, recurrence, and patient survival, Cancer, 101, 604, 10.1002/cncr.20397
Ljubimova, 2008, Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multi-targeting drug delivery, Nanomedicine, 3, 247, 10.2217/17435889.3.2.247
Ljubimova, 2008, Nanoconjugate based on polymalic acid for tumor targeting, Chem. Biol. Interact., 171, 195, 10.1016/j.cbi.2007.01.015
Lockman, 2002, Nanoparticle technology for drug delivery across the blood–brain barrier, Drug Dev. Ind. Pharm., 28, 1, 10.1081/DDC-120001481
Lu, 2007, Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats, Int J Cancer, 120, 420, 10.1002/ijc.22296
Luo, 2002, Cancer-targeted polymeric drugs, Curr. Cancer Drug Targets, 2, 209, 10.2174/1568009023333836
MacDonald, 2005, Collagen–carbon nanotube composite materials as scaffolds in tissue engineering, J. Biomed. Mater. Res. A, 74, 489, 10.1002/jbm.a.30386
Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5
Maeda, 2003, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications, Int. Inmunopharmacol., 3, 319, 10.1016/S1567-5769(02)00271-0
Magnitsky, 2005, In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain, NeuroImage, 26, 744, 10.1016/j.neuroimage.2005.02.029
McMahon, 2008, New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACSET) contrast agents for MRI, Magn. Reson. Med., 60, 803, 10.1002/mrm.21683
Michalet, 2005, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307, 538, 10.1126/science.1104274
Milhem, 2000, Polyamidoamine Starburst® dendrimers as solubility enhancers, Int. J. Pharm., 197, 239, 10.1016/S0378-5173(99)00463-9
Miller, 2009, Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate, Angew. Chem. Int. Ed. Engl., 48, 2949, 10.1002/anie.200805133
Miner, 1997, The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform, J. Cell Biol., 137, 685, 10.1083/jcb.137.3.685
Modo, 2002, Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging, NeuroImage, 17, 803, 10.1006/nimg.2002.1194
Moffat, 2003, A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI, Mol. Imaging, 2, 324, 10.1162/153535003322750664
Murphy, 1970, Variation in the size of antibody sites for the poly-l-aspartate hapten during the immune response, J. Immunol., 105, 460, 10.4049/jimmunol.105.2.460
Murugesan, 2006, Blood compatible carbon nanotubes—nano-based neoproteoglycans, Langmuir, 22, 3461, 10.1021/la0534468
Nasibulin, 2007, A novel hybrid carbon material, Nat. Nanotechnol., 2, 156, 10.1038/nnano.2007.37
Neuwelt, 2009, Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?, Kidney Int., 75, 465, 10.1038/ki.2008.496
Nori, 2005, Intracellular targeting of polymer-bound drugs for cancer chemotherapy, Adv. Drug Deliv. Rev., 57, 609, 10.1016/j.addr.2004.10.006
Odemir, 2009, Genome–environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics, OMICS, 13, 1, 10.1089/omi.2009.0013
Oh, 2004, Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic pluronic(R) block copolymers, J. Control. Release, 94, 411, 10.1016/j.jconrel.2003.10.018
Oliver, 2006, MAGfect: a novel liposome formulation for MRI labelling and visualization of cells, Org. Biomol. Chem., 4, 3489, 10.1039/b605394g
Osawa, 1970, C60: Buckminsterfullerene, Kagaku, 25, 854
Pancrazio, 2008, Neural interfaces at the nanoscale, Nanomed., 3, 823, 10.2217/17435889.3.6.823
Partlow, 2007, 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons, FASEB J., 21, 1647, 10.1096/fj.06-6505com
Patarroyo, 2002, Laminin isoforms in tumor invasion, angiogenesis and metastasis, Semin. Cancer Biol., 12, 197, 10.1016/S1044-579X(02)00023-8
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2, 761, 10.1038/nnano.2007.387
Penfield, 2008, Nephrogenic systemic fibrosis and the use of gadolinium-based contrast agents, Pediatr. Nephrol., 23, 2121, 10.1007/s00467-008-0862-6
Peng, 2008, Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy, Int. J. Nanomedicine, 3, 311
Perazella, 2007, Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link, Clin. J. Am. Soc. Nephrol., 2, 200, 10.2215/CJN.00030107
Peterson, 2003, HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer, Adv. Exp. Med. Biol., 519, 101, 10.1007/0-306-47932-X_7
Pinhassi, 2010, Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells, Biomacromolecules, 11, 294, 10.1021/bm900853z
Ponce, 2007, Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects, J. Natl. Cancer Inst., 99, 53, 10.1093/jnci/djk005
Portilla-Arias, 2008, Biodegradable nanoparticles of partially methylated fungal poly(beta-l-malic acid) as a novel protein delivery carrier, Macromol. Biosci., 8, 551, 10.1002/mabi.200700249
Portilla-Arias, 2008, Synthesis, hydrodegradation and drug releasing properties of methyl esters of fungal poly(β,l-malic acid), Macromol. Biosci., 8, 540, 10.1002/mabi.200700248
Prato, 2008, Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res., 41, 60, 10.1021/ar700089b
Prinzbach, 2000, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20, Nature, 407, 60, 10.1038/35024037
Prinzen, 2007, Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots, Nano Lett., 7, 93, 10.1021/nl062226r
Ravi, 2007, Fullerene containing polymers: a review on their synthesis and supramolecular behavior in solution, J. Nanosci. Nanotechnol., 7, 1176, 10.1166/jnn.2007.456
Reddy, 2006, Vascular targeted nanoparticles for imaging and treatment of brain tumors, Clin. Cancer Res., 12, 6677, 10.1158/1078-0432.CCR-06-0946
Reiss, 2009, Core/Shell semiconductor nanocrystals, Small, 5, 154, 10.1002/smll.200800841
Reubi, 2008, Peptide-based probes for cancer imaging, J. Nucl. Med., 49, 1735, 10.2967/jnumed.108.053041
2003, 468
Roe, 2008, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, J. Antimicrob. Chemother., 1
Sahoo, 2003, Nanotech approaches to drug delivery and imaging, Drug Disc. Today, 8, 1112, 10.1016/S1359-6446(03)02903-9
Saito, 2007, Delivery of doxorubicin from biodegradable PEG hyydrogels having Schiff based linkages, J. Bioact. Compat. Polym., 22, 589, 10.1177/0883911507084653
Salvador-Morales, 2006, Complement activation and protein adsorption by carbon nanotubes, Mol. Immunol., 43, 193, 10.1016/j.molimm.2005.02.006
Sanchez, 2009, Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?, Nanomed. Nanobiotechnol., 1, 511, 10.1002/wnan.41
Sano, 2001, Synthesis of carbon ‘onions’ in water, Nature, 29, 506, 10.1038/35107141
Satchi-Fainaro, 2004, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470, Nat. Med., 10, 255, 10.1038/nm1002
Satoh, 2002, Effects of various thiol molecules added on morphology of dendrimer–gold nanocomposites, J. Colloid Interface Sci., 255, 312, 10.1006/jcis.2002.8585
Schroeder, 1999, Body distribution of 3HH-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after I.V. injections to mice, Life Sci., 66, 495, 10.1016/S0024-3205(99)00619-0
Shah, 2000, DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers, Int. J. Pharm., 208, 41, 10.1016/S0378-5173(00)00534-2
Shaner, 2005, A guide to choosing fluorescent proteins, Nat. Methods, 2, 905, 10.1038/nmeth819
Shi, 2007, Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging, Small, 3, 1245, 10.1002/smll.200700054
Shi, 2008, Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors, Adv. Mater., 20, 1671, 10.1002/adma.200702770
Silva, 2007, Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier, Surg. Neurol., 67, 113, 10.1016/j.surneu.2006.08.033
Singh, 2009, Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol., 86, 215, 10.1016/j.yexmp.2008.12.004
Sofou, 2008, Antibody-targeted liposomes in cancer therapy and imaging, Expert Opin. Drug Deliv., 5, 189, 10.1517/17425247.5.2.189
Sperling, 2008, Biological applications of gold nanoparticles, Chem. Soc. Rev., 37, 1896, 10.1039/b712170a
Steiniger, 2004, Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles, Int. J. Cancer, 109, 759, 10.1002/ijc.20048
Stoermer, 2006, Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays, J. Am. Chem. Soc., 128, 16892, 10.1021/ja0658261
Su, 2007, Nanoshell magnetic resonance imaging contrast agents, J. Am. Chem. Soc., 129, 2139, 10.1021/ja0672066
Sukhishvili, 2000, Materials science. Diffusion of a polymer ‘pancake’, Nature, 406, 146, 10.1038/35018166
Sun, 2005, Intracellular uptake of folate receptor targeted superparamagnetic nanoparticles for enhanced tumor detection by MRI, NSTI-Nanotech., 1, 74
Sykova, 2005, Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord, Ann. N.Y. Acad. Sci., 1049, 146, 10.1196/annals.1334.014
Szerlip, 2007, Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles, J. Neurosurg., 107, 560, 10.3171/JNS-07/09/0560
Talanov, 2006, Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging, Nano Lett., 6, 1459, 10.1021/nl060765q
Tan, L., Li, Y., Drake, T.J., Moroz, L., Wang, K., Li, J., Munteanu, A., James Yang, C., Martinez, K., Tan, W., 2005. Molecular beacons for bioanalytical applications. 130 (7), 1002–1005.
Tartis, 2006, Therapeutic effect of paclitaxel-containing ultrasound contrast agents, Ultrasound Med. Biol., 32, 1771, 10.1016/j.ultrasmedbio.2006.03.017
Tekade, 2009, Dendrimers in oncology: an expanding horizon, Chem. Rev., 109, 49, 10.1021/cr068212n
Terreno, 2008, Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications, Chem. Biodivers., 5, 1901, 10.1002/cbdv.200890178
Thyboll, 2002, Deletion of the laminin alpha4 chain leads to impaired microvessel maturation, Mol. Cell. Biol., 22, 1194, 10.1128/MCB.22.4.1194-1202.2002
Tomalia, 2007, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, Biochem. Soc. Trans., 35, 61, 10.1042/BST0350061
Torchilin, 2003, Peptide and protein drug delivery to and into tumors: challenges and solutions, Drug Discov. Today, 8, 259, 10.1016/S1359-6446(03)02623-0
True, 2007, Quantum dots for molecular pathology: their time has arrived, J. Mol. Diagn., 9, 7, 10.2353/jmoldx.2007.060186
Uchida, 2006, Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles, J. Am. Chem. Soc., 128, 16626, 10.1021/ja0655690
van Nostrum, 2004, Polymeric micelles to deliver photosensitizers for photodynamic therapy, Adv. Drug. Delivery Rev., 56, 9, 10.1016/j.addr.2003.07.013
Vaijayanthimala, 2009, Functionalized fluorescent nanodiamonds for biomedical applications, Nanomed., 4, 47, 10.2217/17435889.4.1.47
van Kasteren, 2009, Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease, Proc. Natl. Acad. Sci. U. S. A., 106, 18, 10.1073/pnas.0806787106
Vinogradov, 2004, Nanogels for oligonucleotide delivery to the brain, Bioconjug. Chem., 15, 50, 10.1021/bc034164r
Vinogradov, 2004, Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides, J. Drug Target., 12, 517, 10.1080/10611860400011927
Visser, 2005, Targeting liposomes with protein drugs to the blood–brain barrier in vitro, Eur. J. Pharm. Sci., 25, 299, 10.1016/j.ejps.2005.03.008
Wang, 1993, The properties and function of gamma-glutamyl hydrolase and poly-gamma-glutamate, Adv. Enzyme Regul., 33, 207, 10.1016/0065-2571(93)90019-A
Wang, 2001, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol., 11, 2319, 10.1007/s003300100908
Winter, 2006, Targeted PARACEST nanoparticle contrast agent for the detection of fibrin, Magn. Reson. Med., 56, 1384, 10.1002/mrm.21093
Winter, 2003, Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging, Cancer Res., 63, 5838
Xiaoling, 2008, Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging, Bioconjug. Chem., 19, 2189, 10.1021/bc8002698
Xing, 2009, Nanodiamonds for nanomedicine, Nanomedicine, 4, 207, 10.2217/17435889.4.2.207
Yang, 2008, Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents, Phys. Med. Biol., 53, 6129, 10.1088/0031-9155/53/21/016
Yong, 2007, Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells, Nano Lett., 7, 761, 10.1021/nl063031m
Yu, 2007, Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation, J. Fluoresc., 17, 243, 10.1007/s10895-007-0163-7
Zagal, 2009, Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis, J Nanosci. Nanotechnol., 9, 2201, 10.1166/jnn.2009.SE15
Zhang, 2006, Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens, BMC Neurosci., 7, 49, 10.1186/1471-2202-7-49
Zhang, 2009, Modular functionalization of carbon nanotubes and fullerenes, J. Am. Chem. Soc., 131, 8446, 10.1021/ja810049z
Zhou, 2004, Deletion of laminin-8 results in increased tumor neovascularization and metastasis in mice, Cancer Res., 64, 4059, 10.1158/0008-5472.CAN-04-0291
Zolnik, 2009, Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs, Adv. Drug Deliv. Rev., 61, 422, 10.1016/j.addr.2009.03.006