Nanoparticles—mediated entomotoxicology: lessons from biologica

Lamia M. El‐Samad1, Nahed R. Bakr2, Mohamed Abouzid3, Eslam S. Shedid4, John P. Giesy5, Shaden A. M. Khalifa6, Hesham R. El‐Seedi7, Abeer El Wakil8, Yahya Al Naggar9
1Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
2Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
3Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
4Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
5Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
6Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
7Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
8Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
9Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abinaya M et al. (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103. https://doi.org/10.1016/j.jtemb.2017.10.002

Acker CI, Souza AC, Pinton S, da Rocha JT, Friggi CA, Zanella R, Nogueira CW (2011) Repeated malathion exposure induces behavioral impairment and AChE activity inhibition in brains of rat pups. Ecotoxicol Environ Saf 74(8):2310–2315. https://doi.org/10.1016/J.ECOENV.2011.07.035

Aidoo OF, Osei-Owusu J, Asante K, Dofuor AK, Boateng BO, Debrah SK, Ninsin KD, Siddiqui SA, Chia SY (2023) Insects as food and medicine: a sustainable solution for global health and environmental challenges. Front Nutr 10:1113219. https://doi.org/10.3389/fnut.2023.1113219

Al Naggar Y, Dabour K, Masry S, Sadek A, Naiem E, Giesy JP (2020) Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environ Sci Pollut Res 27(16):19004–19015. https://doi.org/10.1007/S11356-018-3314-2

Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, Grünewald B, Giesy JP (2021) Are Honey Bees at Risk from Microplastics? Toxics 9(5):109. https://doi.org/10.3390/toxics9050109

Alaraby M, Annangi B, Marcos R, Hernández A (2016) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. 19/2: 65–104. J Toxicol Environ Health B Crit Rev https://doi.org/10.1080/10937404.2016.1166466

Ali HFH, El-Sayed NM, Khodeer DM, Ahmed AAM, Hanna PA, Moustafa YMA (2020) Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol Environ Saf 195:110479. https://doi.org/10.1016/j.ecoenv.2020.110479

Al-Naami MTA, Mahmood EA, Mohammad HEA (2017) The effect of silver nanoparticles on second larval instar of Trogoderma granarium everts (Insecta: Coleoptera: Dermestidae). Int J Sci Nat 8(2):303–306

Anand AS, Gahlot U, Prasad DN, Amitabh, Kohli E (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989. https://doi.org/10.1080/17435390.2019.1602680

Anozie UC, Dalhaimer P (2017) Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy. Adv Drug Deliv Rev 122:65–73. https://doi.org/10.1016/J.ADDR.2017.01.001

Arafat EA, El-Sayed DS, Hussein HK, Flaven-Pouchon J, Moussian B, El-Samad LM, El Wakil A, Hassan MA (2023) Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts (Locusta migratoria) as an Ecotoxicological Model. Antioxidants (Basel) 12(3):653. https://doi.org/10.3390/antiox12030653

Armstrong N et al. (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186. https://doi.org/10.1371/journal.pone.0053186

Avalos A et al. (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem Toxicol 85:114–119. https://doi.org/10.1016/j.fct.2015.06.024

Azqueta A, Dusinska M (2015) The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 10:6–239. https://doi.org/10.3389/FGENE.2015.00239

Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116(6):1637–1651. https://doi.org/10.1007/s00436-017-5438-6

Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 25:12329–12341. https://doi.org/10.1007/S11356-018-1850-4

Bourdineaud JP, Baudrimont M, Gonzalez P, Moreau JL (2006) Challenging the model for induction of metallothionein gene expression. Biochimie 88:1787–1792. https://doi.org/10.1016/J.BIOCHI.2006.07.021

Bryce SM, Avlasevich SL, Bemis JC, Tate M, Walmsley RM, Saad F, Van Dijck K et al. (2013) Flow cytometric 96-well microplate-based in vitro micronucleus assay with human TK6 cells: Protocol optimization and transferability assessment. Environ Mol Mutagen 54:180–194. https://doi.org/10.1002/EM.21760

Catae AF, Roat TC, Pratavieira M, Silva Menegasso AR, Palma MS, Malaspina O (2018) Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicol 27:109–121. https://doi.org/10.1007/S10646-017-1874-4/FIGURES/5

Chakravarthy AK, Muniyappa C, Kandakoor SB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 againstSpodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281

Chaud M, Souto EB, Zielinska A, Severino P, Batain F, Oliveira-Junior J, Alves T (2021) Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 9(6):131. https://doi.org/10.3390/toxics9060131. PMID: 34199739; PMCID: PMC8230079.

Chen C, Huang J, Hsiao Y (2010) Knowledge management and innovativeness: The role of organizational climate and structure. Int J Manpow 31:848–870. https://doi.org/10.1108/01437721011088548

Chen L, Zhou W, Zhou Y, Tan T, Du H, Feng L (2020) Analysis of the effects of nanosilver on bacterial community in the intestinal fluid of silkworms using high-throughput sequencing. Bull Entomol Res 110:309–320. https://doi.org/10.1017/S0007485319000634

Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110. https://doi.org/10.1021/MP300697H/00697H

Clament Sagaya Selvam N, Kim YG, Kim DJ, Hong WH, Kim W, Park SH, Jo WK (2018) Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants. Sci Total Environ 635:741–749. https://doi.org/10.1016/J.SCITOTENV.2018.04.169

Dabour K, Al Naggar Y, Masry S, Naiem E, Giesy JP (2019) Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci Total Environ 651:1356–1367. https://doi.org/10.1016/J.SCITOTENV.2018.09.311

Deerwester SC, Dumais ST, Landauer TK et al. (1990) Indexing by Latent Semantic Analysis. J Am Soc Inf Sci 41:391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391:AID-ASI1>3.0.CO;2-9

Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gilliland D, Valsami-Jones E, Migliore L (2014) Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine 9:2191–2204. https://doi.org/10.2147/IJN.S58397

Dziewięcka M, Flasz B, Rost - Roszkowska M, Kędziorski A, Kochanowicz A, Augustyniak M (2020) Graphene oxide as a new anthropogenic stress factor - multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J Hazard Mater 396:122775. https://doi.org/10.1016/J.JHAZMAT.2020.122775

Ebrahimnejad P, Nikookar SH, Fazeli‐Dinan M, Payman Ziapour S, Farmoudeh A, Babaei A, Enayati A (2021) Preparation, characterisation and comparative toxicity of nanopermethrin against Anopheles stephensi and Culex pipiens. Trop Medi Int Health 26:982–992. https://doi.org/10.1111/tmi.13587

El Kholy S, Al Naggar Y (2023a) Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. Environ Sci Pollut Res 30:27936–27947. https://doi.org/10.1007/s11356-022-24034-0

El Kholy S, Giesy JP, Al Naggar Y (2021) Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). J Hazard Mater 410:124671. https://doi.org/10.1016/J.JHAZMAT.2020.124671

El Kholy S, Al Naggar Y (2023b) Insights into the mechanism of histamine synthesis and recycling disruption induced by exposure to CdO NPs in the fruit fly (Drosophila melanogaster). Environ Sci Pollut Res https://doi.org/10.1007/s11356-023-28211-7

El-Ashram S, Kheirallah DAM, El-Samad LM, Toto NA (2020) Relative expression of microRNAs, apoptosis, and ultrastructure anomalies induced by gold nanoparticles in Trachyderma hispida (Coleoptera: Tenebrionidae). PLOS ONE 15:e0241837. https://doi.org/10.1371/JOURNAL.PONE.0241837

Elmore S (2007) Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 354:495–516. https://doi.org/10.1080/01926230701320337

El-Samad LM, Hassan MA, Bakr NR et al. (2022) Insights into Ag-NPs-mediated pathophysiology and ultrastructural aberrations in ovarian tissues of darkling beetles. Sci Rep 12(1):13899. https://doi.org/10.1038/s41598-022-17712-z

El-Samad LM, El-Gerbed MS, Hussein HS, Flaven-Pouchon J, El Wakil A, Moussian B (2022c) Imidacloprid-induced pathophysiological damage in the midgut of Locusta migratoria (Orthoptera: Acrididae) in the field. Environ Sci Pollut Res Int 29:57644–57655. https://doi.org/10.1007/S11356-022-19804-9

El-Samad LM, Bakr NR, El-Ashram S, Radwan EH, Abdul Aziz KK, Hussein HK, El Wakil A et al. (2022a) Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chem-Biol Interact 367:110166. https://doi.org/10.1016/J.CBI.2022.110166

El-Samad LM, El-Ashram S, Hussein HK, Abdul-Aziz KK, Radwan EH, Bakr NR, El Wakil A et al. (2022b) Time-delayed effects of a single application of AgNPs on structure of testes and functions in Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Sci Total Environ 806:150644. https://doi.org/10.1016/J.SCITOTENV.2021.150644

Fang Y, Lu Z, Li M, Qu J, Ye W, Li F, Wei J, Sun H, Li B (2021) An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol Environ Saf 210:111888. https://doi.org/10.1016/j.ecoenv.2020.111888

Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. https://doi.org/10.1016/S0027-5107(00)00065-8

Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak M (2020) Vitellogenin expression, DNA damage, health status of cells and catalase activity in Acheta domesticus selected according to their longevity after graphene oxide treatment. Sci Total Environ 737:140274. https://doi.org/10.1016/J.SCITOTENV.2020.140274

Flores-López LZ, Espinoza-Gómez H, Somanathan R (2019) Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39:16–26. https://doi.org/10.1002/JAT.3654

Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46(3):558–567. https://doi.org/10.1080/21691401.2017

Ga’al H, Fouad H, Mao G, Tian J, Jianchu M (2018a) Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif Cells Nanomed Biotechnol 46:1171–1179. https://doi.org/10.1080/21691401.2017

Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018b) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Phys 144:49–56. https://doi.org/10.1016/J.PESTBP.2017.11.004

Giedroc DP, Chen X, Apuy JL (2004) Metal response element (MRE)-binding transcription factor-1 (MTF-1): Structure, function, and regulation. Antioxid Redox Signal 3:577–596. https://doi.org/10.1089/15230860152542943

Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362. https://doi.org/10.1021/es200955s

Gulson B, McCall MJ, Bowman DM, Pinheiro T (2015) A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89:1909–1930. https://doi.org/10.1007/S00204-015-1564-Z/TABLES/2

Harisha KS, Shilpa M, Asha S, Parushuram N, Ranjana R, Narayana B, Sangappa Y (2019) Synthesis of silver nanoparticles using Bombyx mori silk fibroin and antibacterial activity. In IOP Conference Series: Materials Science and Engineering (Vol. 577, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1757-899X/577/1/012008

Hayashi M (2016) The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ 38:1–6. https://doi.org/10.1186/S41021-016-0044-X/FIGURES/1

Hensbergen PJ, Van Velzen MJM, Adi Nugroho R, Donker MH, Van Straalen NM (2000) Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol 125:17–24. https://doi.org/10.1016/S0742-8413(99)00087-0

Hurst V, Stevenson PC, Wright GA (2014) Toxins induce “malaise” behaviour in the honeybee (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:881–890. https://doi.org/10.1007/S00359-014-0932-0

Ishwarya R et al. (2017) Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J Photochem Photobiol B 174:133–143. https://doi.org/10.1080/21691401.2017

Jakinala P, Lingampally N, Hameeda B, Sayyed RZ, Khan M Y, Elsayed EA et al. (2021) Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLoS ONE 16:e0241729. https://doi.org/10.1371/journal.pone.0241729

Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Singh GP (2022) Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Front Nanotechnol 3:100. https://doi.org/10.3389/fnano.2021.811056

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 3:1050–1074. https://doi.org/10.3762/BJNANO.9.98

Jha AK, Prasad K (2012) Biological synthesis of cobalt ferrite nanoparticles. Nanotechnol Dev 2:e9. https://doi.org/10.4081/nd.2012.e9

De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 3:133–149. https://doi.org/10.2147/IJN.S596

Jun X, Zhou ZH, Hua, LG, Jun X, Zhou ZH, Hua LG (2013) Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. 26/9: 742–9. Biomed Environ Sci https://doi.org/10.3967/0895-3988.2013.09.005

Kabir E, Kumar V, Kim KH, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271. https://doi.org/10.1016/J.JENVMAN.2018.07.087

Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Protect 109:82–96. https://doi.org/10.1016/j.psep.2017.03.027

Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11:19214–19224. https://doi.org/10.1039/C9NR05647E

Kantrao S, Ravindra MA, Akbar SM, Jayanthi PK, Venkataraman A (2017) Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J Asia-Pacific Entomol 20:583–589. https://doi.org/10.1016/j.aspen.2017.03.018

Karpeta-Kaczmarek J, Augustyniak M, Rost-Roszkowska M (2016) Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food. Arthropod Struct Dev 45:253–264. https://doi.org/10.1016/J.ASD.2016.02.002

Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, Dziewięcka M, Augustyniak M (2018) Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ Res 166:602–609. https://doi.org/10.1016/J.ENVRES.2018.05.027

Khamhaengpol A, Siri S (2016) Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae. J Photochem Photobiol B: Biol 163:337–344. https://doi.org/10.1016/j.jphotobiol.2016.09.003

Khamhaengpol A, Siri S (2017) Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum. Appl Biochem Biotechnol 183(1):110–125. https://doi.org/10.1007/s12010-017-2433-4

Kheirallah DAM, Ali AM, Osman S, Shouman AM (2021a) Nickel oxide nanoparticles induce genotoxicity and cellular alterations in the ground beetle Blaps polycresta (Coleoptera: Tenebrionidae). Toxicol Ind Health 37:408–430. https://doi.org/10.1177/07482337211000988

Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021b) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/J.SCITOTENV.2020.141743

Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, Yamani NE, Longhin EM, Dusinska M (2020) Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment—a review. Nanomaterials 10:1911. https://doi.org/10.3390/NANO10101911

Kos M, Jemec Kokalj A, Glavan G, Marolt G, Zidar P, Božič J, Novak S et al. (2017) Cerium(IV) oxide nanoparticles induce sublethal changes in honeybees after chronic exposure. Environ Sci: Nano 4:2297–2310. https://doi.org/10.1039/C7EN00596B

Kubo-Irie M, Shimoda M, Sato A, Shida K, Yamaguchi T, Mohri H, Takeda K, Irie M (2015) Effect of nanoparticles injected into larvae on spermatogenesis in the pupal testis of the sweet potato hornworm, Agrius convolvuli (L.). Fundam Toxicol Scie 2:1–8. https://doi.org/10.2131/fts.2.1

Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 24:473–484. https://doi.org/10.1016/J.JSPS.2014.11.013

Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure titanium dioxide nanoparticles. J Chem Ecol 40:913–922. https://doi.org/10.1007/s10886-014-0487-0

Liu K, Liu X, Chen J, Wang X, Zhang W (2023) A study on the pesticides-loading capacity of dendritic fibrous nano silica synthesized from 1-pentanol-water microemulsion with a low oil-water ratio. Nanotechnology 34(41). https://doi.org/10.1088/1361-6528/ace4d3

Lozano G, Rodriguez SRK, Verschuuren MA, Rivas JG (2016) Metallic nanostructures for efficient LED lighting. Light Sci Appl 5:e16080–e16080. https://doi.org/10.1038/lsa.2016.80

Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B 174:306–314. https://doi.org/10.1016/j.jphotobiol.2017.08.014

Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445. https://doi.org/10.1038/s41598-018-20728-z

Matusiewicz H (2014) Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles – A systematic analytical review. Acta Biomaterialia 10:2379–2403. https://doi.org/10.1016/J.ACTBIO.2014.02.027

Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180:327–337. https://doi.org/10.1007/s12011-017-1001-7

Milivojević T, Glavan G, Božič J, Sepčić K, Mesarič T, Drobne D (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547–554. https://doi.org/10.1016/J.CHEMOSPHERE.2014.07.054

Mishra P, Balaji APB, Dhal PK, Suresh Kumar RS, Magdassi S, Margulis K, Tyagi BK, Mukherjee A, Chandrasekaran N (2017) Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bull Entomol Res 107(5):676–688. https://doi.org/10.1017/S0007485317000165

Mozhui L, Kakati LN, Meyer-Rochow VB (2021) Entomotherapy: a study of medicinal insects of seven ethnic groups in Nagaland, North-East India. J Ethnobiol Ethnomed 17(1):17. https://doi.org/10.1186/s13002-021-00444-1

Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106. https://doi.org/10.1016/j.etap.2011.09.006

Narendrakumar G, Karthick Raja Namasivayam S (2021) Surface‐modified nanosilica–chitinase (SiNp‐Chs)‐doped nano enzyme conjugate and its synergistic pesticidal activity with plant extracts against armyworm Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). IET nanobiotechnol 15:117–134. https://doi.org/10.1049/nbt2.12004

Ni W, Shao X, Cai X, Wei C, Cui J, Wang R, Liu Y (2015) Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis. PLoS One 10:e0121257. https://doi.org/10.1371/journal.pone.0121257

Olaru D, Olaru A, Hussein Kassem G, Vasile Popescu-drigă M, Radu Pinoşanu L, Iuliu Dumitraşcu D, Leocadia Popescu E et al. (2019) Toxicity and health impact of nanoparticles: Basic biology and clinical perspective. Rom J Morphol Embryol 3:787–792

Ong C, Lee QY, Cai Y, Liu X, Ding J, Yung LY, Bay BH, Baeg G (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632. https://doi.org/10.1038/srep20632

Pandey A, Chandra S, Chauhan LKS, Narayan G, Chowdhuri DK (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta 1830:2256–2266. https://doi.org/10.1016/J.BBAGEN.2012.10.001

Paunovic J, Vucevic D, Radosavljevic T, Mandić-Rajčević S, Pantic I (2020) Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem-Biol Interact 316:108935. https://doi.org/10.1016/J.CBI.2019.108935

Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Falqui A, Bertoni G, Cingolani R (2011) In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413. https://doi.org/10.1007/S12274-011-0095-Z

Rahman A, Parvin A, Khan SH, War AR, Lingaraju K, Prasad R, Das S, Hussain B, Bhattacharyya A (2021) Efficacy of the green synthesized nickel-oxide nanoparticles against pulse beetle, Callosobruchus maculatus (F.) in black gram (Vigna mungo L.) Int J Pest Manag 67(4):306–314. https://doi.org/10.1080/09670874.2020.1773572

Raj A, Shah P, Agrawal N (2017a) Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: an in vivo study. PLoS One 12:e0178051. https://doi.org/10.1371/journal.pone.0178051

Raj A, Shah P, Agrawal N (2017b) Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 7:15617. https://doi.org/10.1038/s41598-017-15645-6

Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL (2017) Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol Vitro 38:179–192. https://doi.org/10.1016/J.TIV.2016.10.012

Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD (2011) Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. NeuroToxico 32:116–122. https://doi.org/10.1016/J.NEURO.2010.11.001

Rocha A, Zhou Y, Kundu S, González JM, BradleighVinson S, Liang H(2011) In vivo observation of gold nanoparticles in the central nervous system of blaberus discoidalis J Nanobiotechnol 9:5. https://doi.org/10.1186/1477-3155-9-5.18

Saeed RM, Dmour I, Taha MO (2020) Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol 8:4. https://doi.org/10.3389/fbioe.2020.00004

Santiago TR, Bonatto CC, Rossato M, Lopes CAP, Lopes CA, G Mizubuti ES, Silva LP (2019) Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt. J Sci Food Agric 99(9):4248–4259. https://doi.org/10.1002/jsfa.9656

Seabrooks L, Hu L (2017) Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharmaceutica Sinica B 7:409–426. https://doi.org/10.1016/J.APSB.2017.05.001

Sharmila B, Lakshmibala S, Balakrishnan V (2022) Tomographic entanglement indicators in frequency combs and Talbot carpets. J Phys B-At Mol Opt 55:185501. https://doi.org/10.1088/1361-6455/ac870d

Sharmila M, Mani RJ, Parvathiraja C, Kader SMA, Siddiqui MR, Wabaidur SM, Lai WC (2022) Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 14:2301. https://doi.org/10.3390/w14152301

Sheeja CC, Anusri A, Levna C, Aneesh PM, Lekha D (2020) MoS2 nanoparticles induce behavioral alteration and oxidative stress mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). J. hazard mater 385:121624. https://doi.org/10.1016/j.jhazmat.2019.121624

Shivananda CS, Asha S, Madhukumar R, Satish S, Narayana R, Byrappa K, Wang Y, Sangappa Y (2016) Biosynthesis of colloidal silver nanoparticles: their characterization and antibacterial activity. Biomed Phys Eng Express 2:035004. https://doi.org/10.1088/2057-1976/2/3/035004

Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JAM, Blinov A, Golik A, Câmara JS (2023) Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 9(5):e15938. https://doi.org/10.1016/j.heliyon.2023.e15938

Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J (2021) Green synthesized chitosan/chitosan nanoforms/nanocomposites for drug delivery applications. Polymers (Basel) 13(14):2256. https://doi.org/10.3390/polym13142256

Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888. https://doi.org/10.1016/j.scitotenv.2016.02.032

Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ, Tuda M, Helmy EA, Wen J, Nozaki T (2021) Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 11:14484. https://doi.org/10.1038/s41598-021-93518-9

Tian JH, Hu JS, Li FC, Ni M, Li YY, Wang BB, Xu KZ, Shen WD, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5(6):764–769. https://doi.org/10.1242/bio.015610

Toto NA, Elhenawy HI, Eltaweil AS, El-Ashram S, El-Samad LM, Moussian B, El Wakil A (2022) Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. Sci Total Environ 806:151483. https://doi.org/10.1016/J.SCITOTENV.2021.151483

Tunçsoy BS (2018) Toxicity of nanoparticles on insects: A review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1:49–61

Vales G, Demir E, Kaya B, Creus A, Marcos R (2012) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468. https://doi.org/10.3109/17435390.2012.689882

Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the anthropocene: Death by a thousand cuts. PNAS 118:e2023989118. https://doi.org/10.1073/pnas.2023989118

Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F (2015) Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Arch Environ contam Toxicol 68:534–542. https://doi.org/10.1007/s00244-014-0121-8

Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L (2018) Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 13:8487. https://doi.org/10.2147/IJN.S170723

Willcox BK, Potts SG, Brown MJF et al. (2023) Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Scientific reports 13:18099. https://doi.org/10.1038/s41598-023-45279-w

Xie Y, Wang B, Li F et al. (2014) Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9(6):e101062. https://doi.org/10.1371/journal.pone.0101062

Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B (2018) Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. Arch Insect Biochem physiol 99:e21470. https://doi.org/10.1371/journal.pone.0118222

Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102. https://doi.org/10.1016/j.chemosphere.2014.11.029

Yin J, Su X, Yan S, Shen J (2023) Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials 13:1255. https://doi.org/10.3390/nano13071255

Yosri N, Khalifa SAM, Guo Z, Xu B, Zou X, El-Seedi HR (2021) Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol 193:1767–1798. https://doi.org/10.1016/J.IJBIOMAC.2021.10.229

Zhang X, Shao W, Huo Y, Kong Y, Zhang W, Li S, Zhou W, Wu X, Qin F, Hu X (2023) The effects of short-term dietary exposure to SiO2 nanoparticle on the domesticated lepidopteran insect model silkworm (Bombyx mori): Evidence from the perspective of multi-omics. Chemosphere 323:138257. https://doi.org/10.1016/j.chemosphere.2023.138257

Zhou Y, Chen Y, Rocha A, Sanchez CJ, Liang H (2020) Assessment of toxicity of nanoparticles using insects as biological models. Methods Mol Biol 2118:269–279. https://doi.org/10.1007/978-1-0716-0319-2_20

Zhou Z, Vázquez-González M, Willner I (2021) Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem Soc Rev 50:4541–4563. https://doi.org/10.1039/D0CS01030H

Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y (2019) Safety assessment of nanomaterials to eyes: an important but neglected issue. Adv Sci 6:1802289. https://doi.org/10.1002/advs.201802289