Nanoparticles—mediated entomotoxicology: lessons from biologica
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abinaya M et al. (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103. https://doi.org/10.1016/j.jtemb.2017.10.002
Acker CI, Souza AC, Pinton S, da Rocha JT, Friggi CA, Zanella R, Nogueira CW (2011) Repeated malathion exposure induces behavioral impairment and AChE activity inhibition in brains of rat pups. Ecotoxicol Environ Saf 74(8):2310–2315. https://doi.org/10.1016/J.ECOENV.2011.07.035
Aidoo OF, Osei-Owusu J, Asante K, Dofuor AK, Boateng BO, Debrah SK, Ninsin KD, Siddiqui SA, Chia SY (2023) Insects as food and medicine: a sustainable solution for global health and environmental challenges. Front Nutr 10:1113219. https://doi.org/10.3389/fnut.2023.1113219
Al Naggar Y, Dabour K, Masry S, Sadek A, Naiem E, Giesy JP (2020) Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environ Sci Pollut Res 27(16):19004–19015. https://doi.org/10.1007/S11356-018-3314-2
Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, Grünewald B, Giesy JP (2021) Are Honey Bees at Risk from Microplastics? Toxics 9(5):109. https://doi.org/10.3390/toxics9050109
Alaraby M, Annangi B, Marcos R, Hernández A (2016) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. 19/2: 65–104. J Toxicol Environ Health B Crit Rev https://doi.org/10.1080/10937404.2016.1166466
Ali HFH, El-Sayed NM, Khodeer DM, Ahmed AAM, Hanna PA, Moustafa YMA (2020) Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol Environ Saf 195:110479. https://doi.org/10.1016/j.ecoenv.2020.110479
Al-Naami MTA, Mahmood EA, Mohammad HEA (2017) The effect of silver nanoparticles on second larval instar of Trogoderma granarium everts (Insecta: Coleoptera: Dermestidae). Int J Sci Nat 8(2):303–306
Anand AS, Gahlot U, Prasad DN, Amitabh, Kohli E (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989. https://doi.org/10.1080/17435390.2019.1602680
Anozie UC, Dalhaimer P (2017) Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy. Adv Drug Deliv Rev 122:65–73. https://doi.org/10.1016/J.ADDR.2017.01.001
Arafat EA, El-Sayed DS, Hussein HK, Flaven-Pouchon J, Moussian B, El-Samad LM, El Wakil A, Hassan MA (2023) Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts (Locusta migratoria) as an Ecotoxicological Model. Antioxidants (Basel) 12(3):653. https://doi.org/10.3390/antiox12030653
Armstrong N et al. (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186. https://doi.org/10.1371/journal.pone.0053186
Avalos A et al. (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem Toxicol 85:114–119. https://doi.org/10.1016/j.fct.2015.06.024
Azqueta A, Dusinska M (2015) The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 10:6–239. https://doi.org/10.3389/FGENE.2015.00239
Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116(6):1637–1651. https://doi.org/10.1007/s00436-017-5438-6
Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 25:12329–12341. https://doi.org/10.1007/S11356-018-1850-4
Bourdineaud JP, Baudrimont M, Gonzalez P, Moreau JL (2006) Challenging the model for induction of metallothionein gene expression. Biochimie 88:1787–1792. https://doi.org/10.1016/J.BIOCHI.2006.07.021
Bryce SM, Avlasevich SL, Bemis JC, Tate M, Walmsley RM, Saad F, Van Dijck K et al. (2013) Flow cytometric 96-well microplate-based in vitro micronucleus assay with human TK6 cells: Protocol optimization and transferability assessment. Environ Mol Mutagen 54:180–194. https://doi.org/10.1002/EM.21760
Catae AF, Roat TC, Pratavieira M, Silva Menegasso AR, Palma MS, Malaspina O (2018) Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicol 27:109–121. https://doi.org/10.1007/S10646-017-1874-4/FIGURES/5
Chakravarthy AK, Muniyappa C, Kandakoor SB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 againstSpodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281
Chaud M, Souto EB, Zielinska A, Severino P, Batain F, Oliveira-Junior J, Alves T (2021) Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 9(6):131. https://doi.org/10.3390/toxics9060131. PMID: 34199739; PMCID: PMC8230079.
Chen C, Huang J, Hsiao Y (2010) Knowledge management and innovativeness: The role of organizational climate and structure. Int J Manpow 31:848–870. https://doi.org/10.1108/01437721011088548
Chen L, Zhou W, Zhou Y, Tan T, Du H, Feng L (2020) Analysis of the effects of nanosilver on bacterial community in the intestinal fluid of silkworms using high-throughput sequencing. Bull Entomol Res 110:309–320. https://doi.org/10.1017/S0007485319000634
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110. https://doi.org/10.1021/MP300697H/00697H
Clament Sagaya Selvam N, Kim YG, Kim DJ, Hong WH, Kim W, Park SH, Jo WK (2018) Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants. Sci Total Environ 635:741–749. https://doi.org/10.1016/J.SCITOTENV.2018.04.169
Dabour K, Al Naggar Y, Masry S, Naiem E, Giesy JP (2019) Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci Total Environ 651:1356–1367. https://doi.org/10.1016/J.SCITOTENV.2018.09.311
Deerwester SC, Dumais ST, Landauer TK et al. (1990) Indexing by Latent Semantic Analysis. J Am Soc Inf Sci 41:391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391:AID-ASI1>3.0.CO;2-9
Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gilliland D, Valsami-Jones E, Migliore L (2014) Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine 9:2191–2204. https://doi.org/10.2147/IJN.S58397
Dziewięcka M, Flasz B, Rost - Roszkowska M, Kędziorski A, Kochanowicz A, Augustyniak M (2020) Graphene oxide as a new anthropogenic stress factor - multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J Hazard Mater 396:122775. https://doi.org/10.1016/J.JHAZMAT.2020.122775
Ebrahimnejad P, Nikookar SH, Fazeli‐Dinan M, Payman Ziapour S, Farmoudeh A, Babaei A, Enayati A (2021) Preparation, characterisation and comparative toxicity of nanopermethrin against Anopheles stephensi and Culex pipiens. Trop Medi Int Health 26:982–992. https://doi.org/10.1111/tmi.13587
El Kholy S, Al Naggar Y (2023a) Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. Environ Sci Pollut Res 30:27936–27947. https://doi.org/10.1007/s11356-022-24034-0
El Kholy S, Giesy JP, Al Naggar Y (2021) Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). J Hazard Mater 410:124671. https://doi.org/10.1016/J.JHAZMAT.2020.124671
El Kholy S, Al Naggar Y (2023b) Insights into the mechanism of histamine synthesis and recycling disruption induced by exposure to CdO NPs in the fruit fly (Drosophila melanogaster). Environ Sci Pollut Res https://doi.org/10.1007/s11356-023-28211-7
El-Ashram S, Kheirallah DAM, El-Samad LM, Toto NA (2020) Relative expression of microRNAs, apoptosis, and ultrastructure anomalies induced by gold nanoparticles in Trachyderma hispida (Coleoptera: Tenebrionidae). PLOS ONE 15:e0241837. https://doi.org/10.1371/JOURNAL.PONE.0241837
Elmore S (2007) Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 354:495–516. https://doi.org/10.1080/01926230701320337
El-Samad LM, Hassan MA, Bakr NR et al. (2022) Insights into Ag-NPs-mediated pathophysiology and ultrastructural aberrations in ovarian tissues of darkling beetles. Sci Rep 12(1):13899. https://doi.org/10.1038/s41598-022-17712-z
El-Samad LM, El-Gerbed MS, Hussein HS, Flaven-Pouchon J, El Wakil A, Moussian B (2022c) Imidacloprid-induced pathophysiological damage in the midgut of Locusta migratoria (Orthoptera: Acrididae) in the field. Environ Sci Pollut Res Int 29:57644–57655. https://doi.org/10.1007/S11356-022-19804-9
El-Samad LM, Bakr NR, El-Ashram S, Radwan EH, Abdul Aziz KK, Hussein HK, El Wakil A et al. (2022a) Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chem-Biol Interact 367:110166. https://doi.org/10.1016/J.CBI.2022.110166
El-Samad LM, El-Ashram S, Hussein HK, Abdul-Aziz KK, Radwan EH, Bakr NR, El Wakil A et al. (2022b) Time-delayed effects of a single application of AgNPs on structure of testes and functions in Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Sci Total Environ 806:150644. https://doi.org/10.1016/J.SCITOTENV.2021.150644
Fang Y, Lu Z, Li M, Qu J, Ye W, Li F, Wei J, Sun H, Li B (2021) An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol Environ Saf 210:111888. https://doi.org/10.1016/j.ecoenv.2020.111888
Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. https://doi.org/10.1016/S0027-5107(00)00065-8
Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak M (2020) Vitellogenin expression, DNA damage, health status of cells and catalase activity in Acheta domesticus selected according to their longevity after graphene oxide treatment. Sci Total Environ 737:140274. https://doi.org/10.1016/J.SCITOTENV.2020.140274
Flores-López LZ, Espinoza-Gómez H, Somanathan R (2019) Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39:16–26. https://doi.org/10.1002/JAT.3654
Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46(3):558–567. https://doi.org/10.1080/21691401.2017
Ga’al H, Fouad H, Mao G, Tian J, Jianchu M (2018a) Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif Cells Nanomed Biotechnol 46:1171–1179. https://doi.org/10.1080/21691401.2017
Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018b) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Phys 144:49–56. https://doi.org/10.1016/J.PESTBP.2017.11.004
Giedroc DP, Chen X, Apuy JL (2004) Metal response element (MRE)-binding transcription factor-1 (MTF-1): Structure, function, and regulation. Antioxid Redox Signal 3:577–596. https://doi.org/10.1089/15230860152542943
Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362. https://doi.org/10.1021/es200955s
Gulson B, McCall MJ, Bowman DM, Pinheiro T (2015) A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89:1909–1930. https://doi.org/10.1007/S00204-015-1564-Z/TABLES/2
Harisha KS, Shilpa M, Asha S, Parushuram N, Ranjana R, Narayana B, Sangappa Y (2019) Synthesis of silver nanoparticles using Bombyx mori silk fibroin and antibacterial activity. In IOP Conference Series: Materials Science and Engineering (Vol. 577, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1757-899X/577/1/012008
Hayashi M (2016) The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ 38:1–6. https://doi.org/10.1186/S41021-016-0044-X/FIGURES/1
Hensbergen PJ, Van Velzen MJM, Adi Nugroho R, Donker MH, Van Straalen NM (2000) Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol 125:17–24. https://doi.org/10.1016/S0742-8413(99)00087-0
Hurst V, Stevenson PC, Wright GA (2014) Toxins induce “malaise” behaviour in the honeybee (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:881–890. https://doi.org/10.1007/S00359-014-0932-0
Ishwarya R et al. (2017) Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J Photochem Photobiol B 174:133–143. https://doi.org/10.1080/21691401.2017
Jakinala P, Lingampally N, Hameeda B, Sayyed RZ, Khan M Y, Elsayed EA et al. (2021) Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLoS ONE 16:e0241729. https://doi.org/10.1371/journal.pone.0241729
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Singh GP (2022) Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Front Nanotechnol 3:100. https://doi.org/10.3389/fnano.2021.811056
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 3:1050–1074. https://doi.org/10.3762/BJNANO.9.98
Jha AK, Prasad K (2012) Biological synthesis of cobalt ferrite nanoparticles. Nanotechnol Dev 2:e9. https://doi.org/10.4081/nd.2012.e9
De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 3:133–149. https://doi.org/10.2147/IJN.S596
Jun X, Zhou ZH, Hua, LG, Jun X, Zhou ZH, Hua LG (2013) Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. 26/9: 742–9. Biomed Environ Sci https://doi.org/10.3967/0895-3988.2013.09.005
Kabir E, Kumar V, Kim KH, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271. https://doi.org/10.1016/J.JENVMAN.2018.07.087
Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Protect 109:82–96. https://doi.org/10.1016/j.psep.2017.03.027
Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11:19214–19224. https://doi.org/10.1039/C9NR05647E
Kantrao S, Ravindra MA, Akbar SM, Jayanthi PK, Venkataraman A (2017) Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J Asia-Pacific Entomol 20:583–589. https://doi.org/10.1016/j.aspen.2017.03.018
Karpeta-Kaczmarek J, Augustyniak M, Rost-Roszkowska M (2016) Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food. Arthropod Struct Dev 45:253–264. https://doi.org/10.1016/J.ASD.2016.02.002
Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, Dziewięcka M, Augustyniak M (2018) Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ Res 166:602–609. https://doi.org/10.1016/J.ENVRES.2018.05.027
Khamhaengpol A, Siri S (2016) Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae. J Photochem Photobiol B: Biol 163:337–344. https://doi.org/10.1016/j.jphotobiol.2016.09.003
Khamhaengpol A, Siri S (2017) Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum. Appl Biochem Biotechnol 183(1):110–125. https://doi.org/10.1007/s12010-017-2433-4
Kheirallah DAM, Ali AM, Osman S, Shouman AM (2021a) Nickel oxide nanoparticles induce genotoxicity and cellular alterations in the ground beetle Blaps polycresta (Coleoptera: Tenebrionidae). Toxicol Ind Health 37:408–430. https://doi.org/10.1177/07482337211000988
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021b) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/J.SCITOTENV.2020.141743
Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, Yamani NE, Longhin EM, Dusinska M (2020) Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment—a review. Nanomaterials 10:1911. https://doi.org/10.3390/NANO10101911
Kos M, Jemec Kokalj A, Glavan G, Marolt G, Zidar P, Božič J, Novak S et al. (2017) Cerium(IV) oxide nanoparticles induce sublethal changes in honeybees after chronic exposure. Environ Sci: Nano 4:2297–2310. https://doi.org/10.1039/C7EN00596B
Kubo-Irie M, Shimoda M, Sato A, Shida K, Yamaguchi T, Mohri H, Takeda K, Irie M (2015) Effect of nanoparticles injected into larvae on spermatogenesis in the pupal testis of the sweet potato hornworm, Agrius convolvuli (L.). Fundam Toxicol Scie 2:1–8. https://doi.org/10.2131/fts.2.1
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 24:473–484. https://doi.org/10.1016/J.JSPS.2014.11.013
Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure titanium dioxide nanoparticles. J Chem Ecol 40:913–922. https://doi.org/10.1007/s10886-014-0487-0
Liu K, Liu X, Chen J, Wang X, Zhang W (2023) A study on the pesticides-loading capacity of dendritic fibrous nano silica synthesized from 1-pentanol-water microemulsion with a low oil-water ratio. Nanotechnology 34(41). https://doi.org/10.1088/1361-6528/ace4d3
Lozano G, Rodriguez SRK, Verschuuren MA, Rivas JG (2016) Metallic nanostructures for efficient LED lighting. Light Sci Appl 5:e16080–e16080. https://doi.org/10.1038/lsa.2016.80
Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B 174:306–314. https://doi.org/10.1016/j.jphotobiol.2017.08.014
Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445. https://doi.org/10.1038/s41598-018-20728-z
Matusiewicz H (2014) Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles – A systematic analytical review. Acta Biomaterialia 10:2379–2403. https://doi.org/10.1016/J.ACTBIO.2014.02.027
Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180:327–337. https://doi.org/10.1007/s12011-017-1001-7
Milivojević T, Glavan G, Božič J, Sepčić K, Mesarič T, Drobne D (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547–554. https://doi.org/10.1016/J.CHEMOSPHERE.2014.07.054
Mishra P, Balaji APB, Dhal PK, Suresh Kumar RS, Magdassi S, Margulis K, Tyagi BK, Mukherjee A, Chandrasekaran N (2017) Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bull Entomol Res 107(5):676–688. https://doi.org/10.1017/S0007485317000165
Mozhui L, Kakati LN, Meyer-Rochow VB (2021) Entomotherapy: a study of medicinal insects of seven ethnic groups in Nagaland, North-East India. J Ethnobiol Ethnomed 17(1):17. https://doi.org/10.1186/s13002-021-00444-1
Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106. https://doi.org/10.1016/j.etap.2011.09.006
Narendrakumar G, Karthick Raja Namasivayam S (2021) Surface‐modified nanosilica–chitinase (SiNp‐Chs)‐doped nano enzyme conjugate and its synergistic pesticidal activity with plant extracts against armyworm Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). IET nanobiotechnol 15:117–134. https://doi.org/10.1049/nbt2.12004
Ni W, Shao X, Cai X, Wei C, Cui J, Wang R, Liu Y (2015) Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis. PLoS One 10:e0121257. https://doi.org/10.1371/journal.pone.0121257
Olaru D, Olaru A, Hussein Kassem G, Vasile Popescu-drigă M, Radu Pinoşanu L, Iuliu Dumitraşcu D, Leocadia Popescu E et al. (2019) Toxicity and health impact of nanoparticles: Basic biology and clinical perspective. Rom J Morphol Embryol 3:787–792
Ong C, Lee QY, Cai Y, Liu X, Ding J, Yung LY, Bay BH, Baeg G (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632. https://doi.org/10.1038/srep20632
Pandey A, Chandra S, Chauhan LKS, Narayan G, Chowdhuri DK (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta 1830:2256–2266. https://doi.org/10.1016/J.BBAGEN.2012.10.001
Paunovic J, Vucevic D, Radosavljevic T, Mandić-Rajčević S, Pantic I (2020) Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem-Biol Interact 316:108935. https://doi.org/10.1016/J.CBI.2019.108935
Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Falqui A, Bertoni G, Cingolani R (2011) In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413. https://doi.org/10.1007/S12274-011-0095-Z
Rahman A, Parvin A, Khan SH, War AR, Lingaraju K, Prasad R, Das S, Hussain B, Bhattacharyya A (2021) Efficacy of the green synthesized nickel-oxide nanoparticles against pulse beetle, Callosobruchus maculatus (F.) in black gram (Vigna mungo L.) Int J Pest Manag 67(4):306–314. https://doi.org/10.1080/09670874.2020.1773572
Raj A, Shah P, Agrawal N (2017a) Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: an in vivo study. PLoS One 12:e0178051. https://doi.org/10.1371/journal.pone.0178051
Raj A, Shah P, Agrawal N (2017b) Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 7:15617. https://doi.org/10.1038/s41598-017-15645-6
Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL (2017) Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol Vitro 38:179–192. https://doi.org/10.1016/J.TIV.2016.10.012
Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD (2011) Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. NeuroToxico 32:116–122. https://doi.org/10.1016/J.NEURO.2010.11.001
Rocha A, Zhou Y, Kundu S, González JM, BradleighVinson S, Liang H(2011) In vivo observation of gold nanoparticles in the central nervous system of blaberus discoidalis J Nanobiotechnol 9:5. https://doi.org/10.1186/1477-3155-9-5.18
Saeed RM, Dmour I, Taha MO (2020) Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol 8:4. https://doi.org/10.3389/fbioe.2020.00004
Santiago TR, Bonatto CC, Rossato M, Lopes CAP, Lopes CA, G Mizubuti ES, Silva LP (2019) Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt. J Sci Food Agric 99(9):4248–4259. https://doi.org/10.1002/jsfa.9656
Seabrooks L, Hu L (2017) Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharmaceutica Sinica B 7:409–426. https://doi.org/10.1016/J.APSB.2017.05.001
Sharmila B, Lakshmibala S, Balakrishnan V (2022) Tomographic entanglement indicators in frequency combs and Talbot carpets. J Phys B-At Mol Opt 55:185501. https://doi.org/10.1088/1361-6455/ac870d
Sharmila M, Mani RJ, Parvathiraja C, Kader SMA, Siddiqui MR, Wabaidur SM, Lai WC (2022) Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 14:2301. https://doi.org/10.3390/w14152301
Sheeja CC, Anusri A, Levna C, Aneesh PM, Lekha D (2020) MoS2 nanoparticles induce behavioral alteration and oxidative stress mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). J. hazard mater 385:121624. https://doi.org/10.1016/j.jhazmat.2019.121624
Shivananda CS, Asha S, Madhukumar R, Satish S, Narayana R, Byrappa K, Wang Y, Sangappa Y (2016) Biosynthesis of colloidal silver nanoparticles: their characterization and antibacterial activity. Biomed Phys Eng Express 2:035004. https://doi.org/10.1088/2057-1976/2/3/035004
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JAM, Blinov A, Golik A, Câmara JS (2023) Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 9(5):e15938. https://doi.org/10.1016/j.heliyon.2023.e15938
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J (2021) Green synthesized chitosan/chitosan nanoforms/nanocomposites for drug delivery applications. Polymers (Basel) 13(14):2256. https://doi.org/10.3390/polym13142256
Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888. https://doi.org/10.1016/j.scitotenv.2016.02.032
Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ, Tuda M, Helmy EA, Wen J, Nozaki T (2021) Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 11:14484. https://doi.org/10.1038/s41598-021-93518-9
Tian JH, Hu JS, Li FC, Ni M, Li YY, Wang BB, Xu KZ, Shen WD, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5(6):764–769. https://doi.org/10.1242/bio.015610
Toto NA, Elhenawy HI, Eltaweil AS, El-Ashram S, El-Samad LM, Moussian B, El Wakil A (2022) Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. Sci Total Environ 806:151483. https://doi.org/10.1016/J.SCITOTENV.2021.151483
Tunçsoy BS (2018) Toxicity of nanoparticles on insects: A review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1:49–61
Vales G, Demir E, Kaya B, Creus A, Marcos R (2012) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468. https://doi.org/10.3109/17435390.2012.689882
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the anthropocene: Death by a thousand cuts. PNAS 118:e2023989118. https://doi.org/10.1073/pnas.2023989118
Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F (2015) Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Arch Environ contam Toxicol 68:534–542. https://doi.org/10.1007/s00244-014-0121-8
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L (2018) Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 13:8487. https://doi.org/10.2147/IJN.S170723
Willcox BK, Potts SG, Brown MJF et al. (2023) Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Scientific reports 13:18099. https://doi.org/10.1038/s41598-023-45279-w
Xie Y, Wang B, Li F et al. (2014) Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9(6):e101062. https://doi.org/10.1371/journal.pone.0101062
Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B (2018) Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. Arch Insect Biochem physiol 99:e21470. https://doi.org/10.1371/journal.pone.0118222
Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102. https://doi.org/10.1016/j.chemosphere.2014.11.029
Yin J, Su X, Yan S, Shen J (2023) Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials 13:1255. https://doi.org/10.3390/nano13071255
Yosri N, Khalifa SAM, Guo Z, Xu B, Zou X, El-Seedi HR (2021) Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol 193:1767–1798. https://doi.org/10.1016/J.IJBIOMAC.2021.10.229
Zhang X, Shao W, Huo Y, Kong Y, Zhang W, Li S, Zhou W, Wu X, Qin F, Hu X (2023) The effects of short-term dietary exposure to SiO2 nanoparticle on the domesticated lepidopteran insect model silkworm (Bombyx mori): Evidence from the perspective of multi-omics. Chemosphere 323:138257. https://doi.org/10.1016/j.chemosphere.2023.138257
Zhou Y, Chen Y, Rocha A, Sanchez CJ, Liang H (2020) Assessment of toxicity of nanoparticles using insects as biological models. Methods Mol Biol 2118:269–279. https://doi.org/10.1007/978-1-0716-0319-2_20
Zhou Z, Vázquez-González M, Willner I (2021) Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem Soc Rev 50:4541–4563. https://doi.org/10.1039/D0CS01030H