Nanoparticles in cancer therapy and diagnosis

Advanced Drug Delivery Reviews - Tập 54 Số 5 - Trang 631-651 - 2002
Irène Brigger1, Catherine Dubernet1, Patrick Couvreur1
1University of Paris-Sud XI, UMR CNRS 8612, Faculty of Pharmacy, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jain, 1987, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039

Jain, 2001, Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function, J. Control. Release, 74, 7, 10.1016/S0168-3659(01)00306-6

Seymour, 1992, Passive tumor targeting of soluble macromolecules and drug conjugates, Crit. Rev. Ther. Drug Carrier Syst., 9, 135

Baban, 1998, Control of tumor vascular permeability, Adv. Drug Deliv. Rev., 34, 109, 10.1016/S0169-409X(98)00003-9

Maeda, 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul., 41, 189, 10.1016/S0065-2571(00)00013-3

Hobbs, 1998, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment, Proc. Natl. Acad. Sci. USA, 95, 4607, 10.1073/pnas.95.8.4607

Yuan, 1995, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res., 55, 3752

Unezaki, 1996, Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy, Int. J. Pharm., 144, 11, 10.1016/S0378-5173(96)04674-1

Links, 1999, Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs, Expert Rev. Mol. Med., 1, 1, 10.1017/S1462399499001099X

Krishna, 2000, Multidrug resistance (MDR) in cancer—mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs, Eur. J. Cancer Sci., 11, 265

Couvreur, 1996, Nanoparticles: preparation and characterization, 183

Yuan, 1998, Transvascular drug delivery in solid tumors, Semin. Radiat. Oncol., 8, 164, 10.1016/S1053-4296(98)80042-8

Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283

Noguchi, 1998, Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues, Jpn. J. Cancer Res., 89, 307, 10.1111/j.1349-7006.1998.tb00563.x

Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5

Grislain, 1983, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm., 15, 335, 10.1016/0378-5173(83)90166-7

Verdun, 1990, Tissue distribution of doxorubicin associated with polyhexylcyanoacrylate nanoparticles, Cancer Chemother. Pharmacol., 26, 13, 10.1007/BF02940287

Brasseur, 1980, Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor, Eur. J. Cancer, 10, 1441, 10.1016/0014-2964(80)90053-5

Couvreur, 1980, Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles, J. Pharm. Sci., 69, 199, 10.1002/jps.2600690222

Chiannilkulchai, 1989, Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastasis, Sel. Cancer Ther., 5, 1, 10.1089/sct.1989.5.1

Chiannilkulchai, 1990, Hepatic tissue distribution of doxorubicin-loaded particles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice, Cancer Chemother. Pharmacol., 26, 122, 10.1007/BF02897257

Soma, 2000, Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro, J. Control. Release, 68, 283, 10.1016/S0168-3659(00)00269-8

Daemen, 1995, Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages, Int. J. Cancer, 61, 716, 10.1002/ijc.2910610520

Gibaud, 1994, Increased bone marrow toxicity of doxorubicin bound to nanoparticles, Eur. J. Cancer A, 30, 820, 10.1016/0959-8049(94)90299-2

Manil, 1995, Acute renal toxicity of doxorubicin (adriamycin)-loaded cyanoacrylate nanoparticles, Pharm. Res., 12, 85, 10.1023/A:1016290704772

Couvreur, 1982, Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles, J. Pharm. Sci., 71, 790, 10.1002/jps.2600710717

Blagoeva, 1992, Diminished genotoxicity of mitomycin C and farmorubicin included in polybutylcyanoacrylate nanoparticles, Mutat. Res., 268, 77, 10.1016/0027-5107(92)90085-G

Rolland, 1989, Clinical pharmacokinetics of doxorubicin in hepatoma patients after a single intravenous injection of free or nanoparticle-bound anthracycline, Int. J. Pharm., 54, 113, 10.1016/0378-5173(89)90330-X

Kattan, 1992, Phase I clinical trial and pharmacokinetics evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles, Invest. New Drugs, 10, 191, 10.1007/BF00877245

Storm, 1995, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system, Adv. Drug Deliv. Rev., 17, 31, 10.1016/0169-409X(95)00039-A

Stolnik, 1995, Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev., 16, 195, 10.1016/0169-409X(95)00025-3

Gref, 1994, Biodegradable long-circulating polymeric nanospheres, Science, 263, 1600, 10.1126/science.8128245

Sharma, 1996, Novel taxol® formulation: polyvinylpyrrolidone nanoparticles-encapsulated taxol® for drug delivery in cancer therapy, Oncol. Res., 8, 281

Mitra, 2001, Tumor targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release, 74, 317, 10.1016/S0168-3659(01)00342-X

Torchilin, 1995, Which polymer can make nanoparticulate drug carriers long-circulating?, Adv. Drug Deliv. Rev., 16, 141, 10.1016/0169-409X(95)00022-Y

Jeon, 1991, Protein–surface interactions in the presence of polyethylene oxide. I. Simplified theory, J. Colloid Interface Sci., 142, 149, 10.1016/0021-9797(91)90043-8

Jeon, 1991, Protein–surface interactions in the presence of polyethylene oxide. II. Effect of protein size, J. Colloid Interface Sci., 142, 159, 10.1016/0021-9797(91)90044-9

Reszka, 1997, Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice, J. Pharmacol. Exp. Ther., 280, 232

Gulyaev, 1999, Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles, Pharm. Res., 16, 1564, 10.1023/A:1018983904537

Kreuter, 2000, Nanoparticulate systems for brain delivery of drugs, Adv. Drug. Deliv. Rev., 47, 65, 10.1016/S0169-409X(00)00122-8

Gelperina, 2000, Chemotherapy of brain tumours using doxorubicin bound to polysorbate 80-coated nanoparticles, 441

Lode, 2001, Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly(methylmethacrylate) nanoparticles in experimental tumor models, Pharm. Res., 18, 1613, 10.1023/A:1013094801351

Bazile, 1995, Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system, J. Pharm. Sci., 84, 493, 10.1002/jps.2600840420

Peracchia, 1997, Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol), J. Biomed. Mater. Res., 34, 317, 10.1002/(SICI)1097-4636(19970305)34:3<317::AID-JBM6>3.0.CO;2-N

Peracchia, 1998, Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate–hexadecyl cyanoacrylate amphiphilic copolymer, Pharm. Res., 15, 550, 10.1023/A:1011973625803

Allémann, 1996, Photodynamic therapy of tumours with hexadecafluoro zinc phthalocyanine formulated in PEG-coated poly(lactic acid) nanoparticles, Int. J. Cancer, 66, 821, 10.1002/(SICI)1097-0215(19960611)66:6<821::AID-IJC19>3.0.CO;2-5

Hawley, 1995, Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics, Adv. Drug. Deliv. Rev., 17, 129, 10.1016/0169-409X(95)00045-9

Nishioka, 2001, Lymphatic targeting with nanoparticulate system, Adv. Drug Deliv. Rev., 47, 55, 10.1016/S0169-409X(00)00121-6

Sakakura, 1992, Enhancement of therapeutic efficacy of aclarubicin against lymph node metastases using a new dosage form: aclarubicin adsorbed on activated carbon particles, Anti-Cancer Drugs, 3, 233, 10.1097/00001813-199206000-00005

Hagiwara, 1997, Selective drug delivery to peri-tumoral region and regional lymphatics by local injection of aclarubicin adsorbed on activated carbon particles in patients with breast cancer—a pilot study, Anti-Cancer Drugs, 8, 666, 10.1097/00001813-199708000-00004

Tokumitsu, 2000, Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor, Cancer Lett., 150, 177, 10.1016/S0304-3835(99)00388-2

Juliano, 1999, Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides, Pharm. Res., 16, 494, 10.1023/A:1011958726518

Fattal, 1998, Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides, J. Control. Release, 53, 137, 10.1016/S0168-3659(97)00246-0

Aynié, 1999, Sponge-like alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides, Antisense Nucleic Acid Drug Dev., 9, 301, 10.1089/oli.1.1999.9.301

Lambert, 2000, Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides, Pharm. Res., 17, 707, 10.1023/A:1007582332491

Schwab, 1994, Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice, Proc. Natl. Acad. Sci. USA, 91, 10460, 10.1073/pnas.91.22.10460

Chavany, 1994, Adsorption of oligonucleotides onto poly(isohexylcyanoacrylate) nanoparticles protects them against nucleases and increases their cellular uptake, Pharm. Res., 11, 1370, 10.1023/A:1018923301967

Godard, 1995, Antisense effect of cholesterol–oligodeoxynucleotide conjugates associated with poly(alkylcyanoacrylate) nanoparticles, Eur. J. Biochem., 232, 404, 10.1111/j.1432-1033.1995.tb20825.x

Tondelli, 1998, Highly efficient cellular uptake of c-myb antisense oligonucleotides through specifically designed polymeric nanospheres, Nucleic Acids Res., 26, 5425, 10.1093/nar/26.23.5425

Zimmer, 1999, Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers, Methods: A Companion to Methods in Enzymology, 18, 286, 10.1006/meth.1999.0786

Ganachaud, 1997, Adsorption of single-strand DNA fragments onto cationic aminated latex particles, Langmuir, 13, 701, 10.1021/la960896e

Lambert, 2000, EWS Fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice, Biochem. Biophys. Res. Commun., 279, 401, 10.1006/bbrc.2000.3963

Tanaka, 1997, EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells, J. Clin. Invest., 99, 239, 10.1172/JCI119152

Larsen, 2000, Resistance mechanisms associated with altered intracellular distribution of anticancer agents, Pharmacol. Ther., 88, 217, 10.1016/S0163-7258(99)00073-X

Bennis, 1994, Enhanced cytotoxicity of doxorubicin encapsulated in polyhexylcyanoacrylate nanospheres against multi-drug-resistant tumour cells in culture, Eur. J. Cancer A, 30, 89, 10.1016/S0959-8049(05)80025-5

Hu, 1996, On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance, Cancer Chemother. Pharmacol., 37, 556, 10.1007/s002800050428

Colin de Verdière, 1994, Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells, Cancer Chemother. Pharmacol., 33, 504, 10.1007/BF00686509

Cuvier, 1992, Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance, Biochem. Pharmacol., 44, 509, 10.1016/0006-2952(92)90443-M

Colin de Verdière, 1997, Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action, Br. J. Cancer, 76, 198, 10.1038/bjc.1997.362

Pépin, 1997, On the use of ion-pair chromatography to elucidate doxorubicin release mechanism from polyalkylcyanoacrylate nanoparticles at the cellular level, J. Chromatogr. B, 702, 181, 10.1016/S0378-4347(97)00362-9

Astier, 1988, Enhancement of adriamycin antitumor activity by its binding with an intracellular sustained-release form, polymethacrylate nanospheres, in U-937 cells, Cancer Res., 48, 1835

Nafziger, 1995, Synthesis and antiproliferative effects of a 4′-morpholino-9-methyl anthracycline, J. Antibiot., 48, 1185, 10.7164/antibiotics.48.1185

Yokoyama, 1999, Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system, J. Drug Target., 7, 171, 10.3109/10611869909085500

Leo, 1997, General and cardiac toxicity of doxorubicin-loaded gelatin nanoparticles, Il Farmaco, 52, 385

Kubiak, 1989, Increased cytotoxicity of nanoparticle-carried adriamycin in vitro and potentiation by verapamil and amiodarone, Biomaterials, 10, 553, 10.1016/0142-9612(89)90062-8

Soma, 2000, Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles, Biomaterials, 21, 1, 10.1016/S0142-9612(99)00125-8

Müller, 1990, In vitro model for the degradation of alkylcyanoacrylate nanoparticles, Biomaterials, 11, 590, 10.1016/0142-9612(90)90084-4

Stella, 2000, Design of folic acid-conjugated nanoparticles for drug targeting, J. Pharm. Sci., 89, 1452, 10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P

Stella, 2001, Biological characterisation of folic acid-conjugated nanoparticles in cellular models

Bhalgat, 1998, Green- and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry, J. Immunol. Methods, 219, 57, 10.1016/S0022-1759(98)00121-5

Väisänen, 2000, Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies, Luminescence, 15, 389, 10.1002/1522-7243(200011/12)15:6<389::AID-BIO626>3.0.CO;2-7

Santra, 2001, Development of novel dye-doped silica nanoparticles for biomarker application, J. Biomed. Opt., 6, 160, 10.1117/1.1353590

Davis, 1986, Colloidal particles as radiodiagnostic agents, 175

Ghanem, 1993, Labelled polycyanoacrylate nanoparticles for human in vivo, Appl. Radiat. Isot., 44, 1219, 10.1016/0969-8043(93)90068-L

Wisner, 1996, Indirected computed tomography lymphography using iodinated nanoparticles to detect cancerous lymph nodes in a cutaneous melanoma model, Acad. Radiol., 3, 40, 10.1016/S1076-6332(96)80331-X

Wisner, 1996, Characterization of normal and cancerous lymph nodes on indirect computed tomography lymphographic studies after interstitial injection of iodinated nanoparticles, Acad. Radiol., 3, S257, 10.1016/S1076-6332(96)80551-4

Bonnemain, 1998, Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications—a review, J. Drug Target., 6, 167, 10.3109/10611869808997890

Moore, 2000, Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model, Radiology, 214, 568, 10.1148/radiology.214.2.r00fe19568

Zimmer, 1995, MR imaging of phagocytosis in experimental glioma, Radiology, 197, 533, 10.1148/radiology.197.2.7480707

Moore, 1997, Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages, J. Magn. Reson. Imaging, 7, 1140, 10.1002/jmri.1880070629

Enochs, 1999, Improved delineation of human brain tumors on MR images using long-circulating, superparamagnetic iron oxide agent, J. Magn. Reson. Imaging, 9, 228, 10.1002/(SICI)1522-2586(199902)9:2<228::AID-JMRI12>3.0.CO;2-K

Weissleder, 1994, MR lymphography: study of a high-efficiency lymphotrophic agent, Radiology, 191, 225, 10.1148/radiology.191.1.8134576

Clément, 1994, Magnetic resonance lymphography—Enhancement patterns using superparamagnetic nanoparticles, Invest. Radiol., 29, S226, 10.1097/00004424-199406001-00075

Högemann, 2000, Improvement of MRI probes to allow efficient detection of gene expression, Bioconjug. Chem., 11, 941, 10.1021/bc000079x

Tiefenauer, 1993, Antibody–magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetite resonance imaging, Bioconjug. Chem., 4, 347, 10.1021/bc00023a007

Kirsh, 1998, Angiostatin suppresses malignant glioma growth in vivo, Cancer Res., 58, 4654

Li, 2001, Pegylated polycyanoacrylate nanoparticles as tumor necrosis-α carriers, J. Control. Release, 71, 287, 10.1016/S0168-3659(01)00235-8

Yoo, 2000, In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugate, J. Control. Release, 68, 419, 10.1016/S0168-3659(00)00280-7