Nanoparticle-based combination drug delivery systems for synergistic cancer treatment
Tóm tắt
Despite being a leading cause of death worldwide, cancer remains difficult to treat due to the development of drug resistance and severe adverse effects associated with conventional chemotherapy. Hence, combination chemotherapy is theoretically advantageous owing to the synergistic effects of drugs and suppression of drug resistance. Nanoparticle-mediated chemotherapeutic delivery is a promising approach for the effective treatment of various cancers because it may simultaneously enhance therapeutic effects and reduce side effects. The loading of multiple chemotherapeutic agents to these systems could additionally improve the antineoplastic efficacy. This review highlights recent advances in combination chemotherapy using small-molecule chemotherapeutic agents via nanocarrier systems, e.g., liposomes, polymeric micelles, dendrimers, polymer-drug conjugates, and mesoporous silica nanoparticles. Specifically, it emphasizes the unique properties of these systems that make them amenable to optimized treatments with respect to efficacy and safety and clarifies areas in which current therapeutic strategies can be improved.
Tài liệu tham khảo
Agrawal V, Paul MK, Mukhopadhyay AK (2005) 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization. J Liposome Res 15(3–4):141–155
Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44(10):1094–1104
Arcos D, López-Noriega A, Ruiz-Hernández E, Terasaki O, Vallet-Regi M (2009) Ordered mesoporous microspheres for bone grafting and gene delivery. Chem Mater 21(6):1000–1009
Armstrong AJ, Carducci MA (2006) New drugs in prostate cancer. Curr Opin Urol 16(3):138–145
Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122:324–330
Bae Y, Alani AW, Rockich NC, Lai TS, Kwon GS (2010) Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res 27(11):2421–2432
Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337
Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252
Batist G, Gelmon KA, Chi KN, Miller WH Jr, Chia SK, Mayer LD, Swenson CE, Janoff AS, Louie AC (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15(2):692–700
Beer TM, Ryan C, Alumkal J, Ryan CW, Sun J, Eilers KM (2010) A phase II study of paclitaxel poliglumex in combination with transdermal estradiol for the treatment of metastatic castration-resistant prostate cancer after docetaxel chemotherapy. Anticancer Drugs 21(4):433–438
Bell A (2005) Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 253(2):171–184
Boissiere C, Grosso D, Chaumonnot A, Nicole Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23(5):599–623
Cai L, Xu G, Shi C, Guo D, Wang X, Luo J (2015) Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37:456–468
Chipman SD, Oldham FB, Pezzoni G, Singer JW (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine 1(4):375–383
Chitkara D, Singh S, Kumar V, Danguah M, Behrman SW, Kumar N, Mahato RI (2012) Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm 9(8):2350–2357
Cho H, Lai TC, Kwon GS (2013) Poly (ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release 166:1–9
Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681
Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446
Colilla M, Manzano M, Izquierdo-Barba I, Vallet-Regi M, Boissiere C, Sanchez C (2010) Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chem Mater 22(5):1821–1830
Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684
De La Taille A, Vacherot F, Salomon L, Druel C, De Gil Diez Medina S, Abbou C, Buttyan R, Chopin D (2001) Hormone-refractory prostate cancer: a multi-step and multi-event process. Prostate Cancer Prostatic Dis 4(4):204–212
Delbaldo C, Michiels S, Syz N, Soria JC, Le Chevalier T, Pignon JP (2004) Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA 292(4):470–484
Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK (2013) Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Control Release 171(3):339–348
Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, Gebbia V, Smit EF, Morabito A, Gallo C, Perrone F, Gridelli C (2009) Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 27(11):1836–1843
Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706
Dong JT (2006) Prevalent mutations in prostate cancer. J Cell Biochem 97(3):433–447
Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701
Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr Relat Cancer 12:S189–S199
Fang J, Nakamura H, Marda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151
Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939
Gao M, Xu Y, Qiu L (2015) Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine 10:6615–6632
Greco F, Vicent MJ (2008) Polymer-drug conjugates: current status and future trends. Front Biosci 13:2744–2756
Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev 61:1203–1213
Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, Duncan R (2007) Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Control Release 117(1):28–39
Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257
Gustafson TP, Cao Q, Wang ST, Berezin MY (2013) Design of irreversible optical nanothermometers for thermal ablations. Chem Commun (Camb) 49(7):680–682
Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, Kabanov AV (2012) Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm 9(8):2302–2313
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70
Harasym TO, Tardi PG, Harasym NL, Harvie P, Johnstone SA, Mayer LD (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16(8):361–374
Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR (2012) Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing paclitaxel, rapamycin, and 17-AAG. Mol Cancer Ther 11:2233–2242
Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed Engl 45(20):3216–3251
Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200
Ismael GF, Rosa DD, Mano MS, Awada A (2008) Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat Rev 34(1):81–91
Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ (2009) Mechanism of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128
Johnson SM, Bangham AD, Hill MW, Korn ED (1971) Single bilayer liposomes. Biochim Biophys Acta 233(3):820–826
Kaneshiro TL, Lu ZR (2009) Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30(29):5660–5666
Katragadda U, Teng Q, Rayaprolu BM, Chandran T, Tan C (2011) Multi-drug delivery to tumor cells via micellar nanocarriers. Int J Pharm 419(1–2):281–286
Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7:49–62
Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6(3):202–210
Kopecek J, Kopecková P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62(2):122–149
Krakovicová H, Etrych T, Ulbrich K (2009) HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci 37(3–4):405–412
Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475
Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321
Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250
Lee SM, O’Halloran TV, Nguyen ST (2010) Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J Am Chem Soc 132(48):17130–17138
Li L, Liu T, Fu C, Liu H, Tan L, Meng X (2014a) Multifunctional silica-based nanocomposites for cancer nanotheranostics. J Biomed Nanotechnol 10(9):1784–1809
Li M, Tang Z, Lv S, Song W, Hong H, Jing X, Zhang Y, Chen X (2014b) Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 35(12):3851–3864
Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, Li XT, Zhao WY, Mu LM, Zeng F, Lou JN, Lu WL (2014c) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35(21):5591–5604
Ma X, Zhao Y, Ng KW, Zhao Y (2013) Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chemistry 19(46):15593–15603
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284
Martinez A, Fuentes-Paniagua E, Baeza A, Sánchez-Nieves J, Cicuendez M, Gómez R, de la Mata FJ, González B, Vallet-Regi M (2015) Mesoporous silica nanoparticles decorated with carbosilane dendrons as new non-viral oligonucleotide. Chemistry 21(44):15651–15666
Matsumura Y (2014) The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 44:515–525
Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anti-cancer agent-incorporating polymer micelles. Cancer Sci 100:572–579
Mayer LD, Janoff AS (2007) Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7(4):216–223
Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4):3540–3557
Mills EJ, Thorlund K, Ioannidis JP (2012) Calculating additive treatment effects from multiple randomized trials provides useful estimates of combination therapies. J Clin Epidemiol 65(12):1282–1288
Minko T, Kopecková P, Kopecek J (2000) Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer 86(1):108–117
Mita M, Mita A, Sarantopoulos J, Takimoto CH, Rowinsky EK, Romero O, Angiuli P, Allievi C, Eisenfeld A, Verschraegen CF (2009) Phase I study of paclitaxel poliglumex administered weekly for patients with advanced solid malignancies. Cancer Chemother Pharmacol 64(2):287–295
Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nanoscale drug delivery. React Funct Polym 71:227–234
Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, Shopsowitz KE, Shah NJ, Yaffe MB, Hammond PT (2014) A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 7(325):ra44
Muhammad F, Guo M, Wang A, Zhao J, Qi W, Guo Y, Zhu G (2014) Responsive delivery of drug cocktail via mesoporous silica nanolamps. J Colloid Interface Sci 434:1–8
Muthu MS, Feng SS (2010) Nanopharmacology of liposomes developed for cancer therapy. Nanomedicine (Lond) 5(7):1017–1019
Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, Cho CS, Lee HC (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383(1–2):192–200
O’Brien ME, Socinski MA, Popovich AY, Bondarenko IN, Tomova A, Bilynsky BT, Hotko YS, Ganul VL, Kostinsky IY, Eisenfeld AJ, Sandalic L, Oldham FB, Bandstra B, Sandler AB, Singer JW (2008) J Thorac Oncol 3(7):728–734
Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23
Pradhan R, Ramasamy T, Choi JY, Kim JH, Poudel BK, Tak JW, Nukolova N, Choi HG, Yong CS, Kim JO (2015) Hyaluronic acid-decorated poly (lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin. Carbohydr Polym 123:313–323
Putnam D, Kopecek J (1995) Polymer conjugates with anticancer activity. Adv Polym Sci 122:55–123
Ramasamy T, Haider ZS, Tran TH, Choi JY, Jeong JH, Shin BS, Choi HG, Yong CS, Kim JO (2014a) Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10(12):5116–5127
Ramasamy T, Kim J, Choi HG, Yong CS, Kim JO (2014b) Novel dual drug-loaded block ionomer complex micelles for enhancing the efficacy of chemotherapy treatments. J Biomed Nanotechnol 10(7):1304–1312
Ramasamy T, Kim JH, Choi JY, Tran TH, Choi HG, Yong CS, Kim JO (2014c) pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B 2:6324–6333
Ramsay EC, Dos Santos N, Dragowska WH, Laskin JJ, Bally MB (2005) The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations. Curr Drug Deliv 2(4):341–351
Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990
Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in apoptosis. J Struct Biol 129(2–3):346–358
Sabbatini P, Sill MW, O’Malley D, Adler L, Secord AA (2008) A phase II trial of paclitaxel poliglumex in recurrent or persistent ovarian or primary peritoneal cancer (EOC): a Gynecologic Oncology Group Study. Gynecol Oncol 111(3):455–460
Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, Greenberger LM, Horak ID (2008) Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11-refractory model. Clin Cancer Res 14(6):1888–1896
Scarano W, de Souza P, Stenzel MH (2015) Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multi-drug-resistant cancer. Biomater Sci 3(1):163–174
Shim G, Lee S, Choi J, Lee S, Kim CW, Oh YK (2014) Liposomal co-delivery of omacetaxine mepesuccinate and doxorubicin for synergistic potentiation of antitumor activity. Pharm Res 31(8):2178–2185
Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS (2011) A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm 8:1257–1265
Shin HC, Cho H, Lai TC, Kozak KR, Kolesar JM, Kwon GS (2012) Pharmacokinetic study of 3-in-1 poly (ethylene glycol)-block-poly (D, L-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release 163:93–99
Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11(3):971–981
Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170
Takakura Y, Hashida M (1995) Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit Rev Oncol Hematol 18(3):207–231
Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, Harvie P, Bermudes D, Mayer L (2009a) In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33(1):129–139
Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, Bermudes DG, Mayer LD (2009b) Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther 8(8):2266–2275
Tekade RK, Dutta T, Gajbhiye V, Jain NK (2009) Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul 26(4):287–296
Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO (2016) Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces 143:271–277
Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics. CA Cancer J Clin 65(2):87–108
Touma SE, Goldberg JS, Moench P, Guo X, Tickoo SK, Gudas LJ, Nanus DM (2005) Retionic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 11(9):3558–3566
Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, Kim JO (2015) Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces 7(51):28647–28655
Trewyn BG, Slowing II, Giri S, Chen HT, Lin VS (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40(9):846–853
Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607
Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32(32):8281–8290
Wang E, Xiong H, Zou D, Xie Z, Huang Y, Jing X, Sun X (2014) Co-delivery of oxaliplatin and demethylcantharidin via a polymer-drug conjugate. Macromol Biosci 14(4):588–596
Wang B, Yu XC, Xu SF, Xu M (2015) Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J Nanobiotechnol 13:22
Wong MY, Chiu GN (2010) Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 21(4):401–410
Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7(42):17745–17755
Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769
Zhang X, Li J, Yan M (2016) Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm. doi:10.3109/03639045.2016.1160103
Zhong J, Li L, Zhu X, Guan S, Yang Q, Zhou Z, Zhang Z, Huang Y (2015) A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials 65:43–55
Zhu J, Xu X, Hu M, Qiu L (2015) Co-encapsulation of combretastatin-A4 phosphate and doxorubicin in polymerosomes for synergistic therapy of nasopharyngeal epidermal carcinoma. J Biomed Nanotechnol 11(6):997–1006
Zoli W, Ricotti L, Tesei A, Barzanti F, Amadori D (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37(1):69–82
Zucker D, Barenholz Y (2010) Optimization of vincristine-topotecan combination—paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release 146(3):326–333
Zucker D, Andriyanov AV, Steiner A, Raviv U, Barenholz Y (2012) Characterization of PEGylated nanoliposomes co-remotedly loaded with topotecan and vincristine: relating structure and pharmacokinetics to therapeutic efficacy. J Control Release 160(2):281–289