Nanomaterials in Cosmetics: Recent Updates
Tóm tắt
Bài tổng quan này tổng hợp các cập nhật gần đây về việc sử dụng vật liệu nano trong mỹ phẩm. Đặc biệt chú trọng đến những ứng dụng của vật liệu nano trong ngành công nghiệp mỹ phẩm, những đặc điểm độc đáo của chúng, cũng như những lợi ích của các thành phần quy mô nano so với các sản phẩm không ở quy mô nano. Các thực hành tiên tiến về đặc trưng hóa lý-hóa và độc tính của vật liệu nano cũng được xem xét. Hơn nữa, bài viết cũng chú trọng đến các quy định hiện hành và đánh giá an toàn hiện có liên quan đến việc sử dụng vật liệu nano trong mỹ phẩm—hướng dẫn an toàn về vật liệu nano trong mỹ phẩm của Châu Âu năm 2019, cùng với các phương pháp mới đề xuất để đánh giá độc tính của vật liệu nano. Những lo ngại về rủi ro sức khỏe đã hạn chế việc sử dụng thêm vật liệu nano trong mỹ phẩm, và do có thể có những vật liệu nano mới được ngành công nghiệp mỹ phẩm sử dụng trong tương lai, một sự đặc trưng và đánh giá rủi ro chi tiết là cần thiết để đáp ứng các yêu cầu an toàn tiêu chuẩn.
Từ khóa
#vật liệu nano #mỹ phẩm #đánh giá an toàn #độc tính #quy định hiện hànhTài liệu tham khảo
Santos, A.C., Panchal, A., Rahman, N., Pereira-Silva, M., Pereira, I., Veiga, F., and Lvov, Y. (2019). Evolution of hair treatment and care: Prospects of nanotube-based formulations. Nanomaterials, 9.
Mihranyan, 2012, Current status and future prospects of nanotechnology in cosmetics, Prog. Mater. Sci., 57, 875, 10.1016/j.pmatsci.2011.10.001
Pastrana, 2018, Nanomaterials in cosmetic products: The challenges with regard to current legal frameworks and consumer exposure, Nano Ethics, 12, 123
Carrouel, F., Viennot, S., Ottolenghi, L., Gaillard, C., and Bourgeois, D. (2020). Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials, 10.
Revia, R.A., Wagner, B.A., and Zhang, M. (2019). A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials, 9.
(2020, April 14). Regulation (EC) No 1223/2009. Available online: https://ec.europa.eu/growth/sectors/cosmetics/products/nanomaterials_en.
Ahmad, 2018, Strategies in development and delivery of nanotechnology based cosmetic products, Drug Res., 68, 545, 10.1055/a-0582-9372
Raj, 2012, Nanotechnology in cosmetics: Opportunities and challenges, J. Pharm. Bioall. Sci., 4, 186, 10.4103/0975-7406.99016
Grumezescu, A.M. (2016). Nanobiomaterials in galenic formulations and cosmetics. Nanobiomaterials in Galenic Formulations and Cosmetics, William Andrew Publishing.
L’Oreal (2020, April 14). What Are Nanoparticles?. Available online: https://inside-our-products.loreal.com/ingredients/nanoparticles.
Shiseido (2020, April 14). What Is Nano Particles?. Available online: https://our-products-policy.shiseido.com/en/ingredients/nano-particles.
Singh, 2012, Nanotechnology in cosmetics: A boon or bane?, Toxicol. Environ. Chem., 94, 1467, 10.1080/02772248.2012.723482
SCCS (2019). Guidance on the Safety Assessment of Nanomaterials in Cosmetics, Scientific Committee on Consumer Safety. SCCS/1611/19.
FDA (2020, April 14). Final Guidance for Industry—Safety of Nanomaterials in Cosmetic Products, Available online: https://www.fda.gov/media/83957/download2014.
(2020, April 26). European Union Observatory for Nanomaterials (EUON). Available online: https://euon.echa.europa.eu/.
Cornier, J., Keck, C., and Voorde, M. (2019). Nanocosmetics from Ideas to Products: From Ideas to Products, Springer.
Lu, 2015, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, J. Food Drug Anal., 23, 587, 10.1016/j.jfda.2015.02.009
Hagemeyer, 2018, Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers, Part. FIBRE Toxicol., 15, 8, 10.1186/s12989-018-0246-4
Mohammed, 2019, Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers, J. Investig. Dermatol., 139, 308, 10.1016/j.jid.2018.08.024
Humbert, P., Fanian, F., Maibach, H., and Agache, P. (2017). Measuring silica nanoparticles in the skin. Agache’s Measuring the Skin, Springer.
(2020, April 14). Is It Safe to Use Cosmetics Containing Silica in Nanoform?. Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/docs/citizens_nanosilica_en.pdf.
Poland, C.A., Larsen, P.B., Read, S.A.K., Varet, J., Hankin, S.M., and Lam, H.R. (2016). Assessment if Nano-Enabled Technologies in Cosmetics, The Danish Environmental Protection Agency.
Santos, 2019, Nanotechnology for the development of new cosmetic formulations, Expert Opin. Drug Deliv., 16, 313, 10.1080/17425247.2019.1585426
Mebert, 2017, Nanoengineered silica: Properties, applications and toxicity, Food Chem. Toxicol., 109, 753, 10.1016/j.fct.2017.05.054
Laranjeira, 2017, Enhanced biosafety of silica coated gadolinium based nanoparticles, J. Mater. Sci. Mater. Med., 28, 46, 10.1007/s10856-017-5855-1
Winkler, 2016, Critical review of the safety assessment of nano-structured silica additives in food, J. Nanobiotechnol., 14, 44, 10.1186/s12951-016-0189-6
Park, 2010, Assessment of dermal toxicity of Nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model, Toxicology, 267, 178, 10.1016/j.tox.2009.10.011
Sahu, 2014, Carbon black particle exhibits size dependent toxicity in human monocytes, Int. J. Inflam., 2014, 827019
Scientific Committee on Consumer, and Chaudhry, Q. (2016). Opinion of the scientific committee on consumer safety (SCCS)—Second revision of the opinion on carbon black, nano-form, in cosmetic products. Regul. Toxicol. Pharmacol., 79, 103–104.
Couteau, 2015, Tris-biphenyl triazine, a new ultraviolet filter studied in terms of photoprotective efficacy, Int. J. Pharm., 487, 120, 10.1016/j.ijpharm.2015.03.077
Triazine, B. (2020, April 14). TINOSORB® A2B. Available online: https://www.carecreations.basf.com/product-formulations/product-highlights/product-highlights-detail/TINOSORB-A2B/30478125.
Doak, 2016, Opinion of the scientific committee on consumer safety (SCCS)—Opinion on the use of 2,2’-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) (nano)—S79—In cosmetic products, Regul. Toxicol. Pharmacol., 76, 215, 10.1016/j.yrtph.2016.01.002
Coelho, 2019, Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment, Sci. Rep., 99, 11050, 10.1038/s41598-019-47491-z
Bernauer, 2018, Opinion of the scientific committee on consumer safety (SCCS)—Revision of the opinion on hydroxyapatite (nano) in cosmetic products, Regul. Toxicol. Pharmacol., 98, 274, 10.1016/j.yrtph.2018.07.018
Ramis, J.M., Coelho, C.C., Córdoba, A., Quadros, P.A., and Monjo, M. (2018). Safety assessment of nano-hydroxyapatite as an oral care ingredient according to the EU Cosmetics Regulation. Cosmetics, 5.
Chang, C.C., Chen, C.P., Wu, T.H., Yang, C.H., Lin, C.W., and Chen, C.Y. (2019). Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials, 9.
Chavva, S.R., Deshmukh, S.K., Kanchanapally, R., Tyagi, N., Coym, J.W., Singh, A.P., and Singh, S. (2019). Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: Potential synergistic interactions. Nanomaterials, 9.
Fratoddi, I., Venditti, I., Battocchio, C., Carlini, L., Amatori, S., Porchia, M., Tisato, F., Bondino, F., Magnano, E., and Pellei, M. (2019). Highly hydrophilic gold nanoparticles as carrier for anticancer copper(I) complexes: Loading and release studies for biomedical applications. Nanomaterials, 9.
Martínez-Aquino, C., Costero, A.M., Gil, S., and Gaviña, P. (2019). Resorcinol functionalized gold nanoparticles for formaldehyde colorimetric detection. Nanomaterials, 9.
Nancy, P., Nair, A.K., Antoine, R., Thomas, S., and Kalarikkal, N. (2019). In situ decoration of gold nanoparticles on graphene oxide via nanosecond laser ablation for remarkable chemical sensing and catalysis. Nanomaterials, 9.
Penninckx, S., Heuskin, A.C., Michiels, C., and Lucas, S. (2019). Thioredoxin reductase activity predicts gold nanoparticle radiosensitization effect. Nanomaterials, 9.
Rout, A., Boltaev, G.S., Ganeev, R.A., Fu, Y., Maurya, S.K., Kim, V.V., Srinivasa Rao, K., and Guo, C. (2019). Nonlinear optical studies of gold nanoparticle films. Nanomaterials, 9.
Schavkan, A., Gollwitzer, C., Garcia-Diez, R., Krumrey, M., Minelli, C., Bartczak, D., Cuello-Nuñez, S., Goenaga-Infante, H., Rissler, J., and Sjöström, E. (2019). Number concentration of gold nanoparticles in suspension: SAXS and spICPMS as traceable methods compared to laboratory methods. Nanomaterials, 9.
Silva, I.O., Ladchumananandasivam, R., Nascimento, J.H.O., Silva, K.K.O.S., Oliveira, F.R., Souto, A.P., Felgueiras, H.P., and Zille, A. (2019). Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials, 9.
Xie, P., Qi, Y., Wang, R., Wu, J., and Li, X. (2019). Aqueous gold nanoparticles generated by ac and pulse-power-driven plasma jet. Nanomaterials, 9.
Zhao, G., and Liu, G. (2019). Electrochemical deposition of gold nanoparticles on reduced graphene oxide by fast scan cyclic voltammetry for the sensitive determination of As(III). Nanomaterials, 9.
Ali, E.M., and Abdallah, B.M. (2020). Effective inhibition of candidiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles. Nanomaterials, 10.
Cobos, M., De-La-Pinta, I., Quindós, G., Fernández, M.D., and Fernández, M.J. (2020). Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials, 10.
Ghodake, G., Kim, M., Sung, J.S., Shinde, S., Yang, J., Hwang, K., and Kim, D.Y. (2020). Extracellular synthesis and characterization of silver nanoparticles—Antibacterial activity against multidrug-resistant bacterial strains. Nanomaterials, 10.
Nguyen, D.H., Lee, J.S., Park, K.D., Ching, Y.C., Nguyen, X.T., Phan, V.H.G., and Thi, T.T.H. (2020). Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials, 10.
Tasche, D., Weber, M., Mrotzek, J., Gerhard, C., Wieneke, S., Möbius, W., Höfft, O., and Viöl, W. (2020). In situ investigation of the formation kinematics of plasma-generated silver nanoparticles. Nanomaterials, 10.
Yang, K., Huang, L.J., Wang, Y.X., Du, Y.C., Zhang, Z.J., Wang, Y., Kipper, M.J., Belfiore, L.A., and Tang, J.G. (2020). Graphene oxide nanofiltration membranes containing silver nanoparticles: Tuning separation efficiency via nanoparticle size. Nanomaterials, 10.
Lohani, A., Verma, A., Joshi, H., Yadav, N., and Karki, N. (2014). Nanotechnology-based cosmeceuticals. ISRN Dermatol. Hindawi.
SCCS (2020, April 14). Opinion on Colloidal Silver (Nano). Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_219.pdf.
Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomed. Nanotechnol. Biol. Med., 33, 95, 10.1016/j.nano.2006.12.001
Simonetti, 1992, Electrochemical Ag+ for preservative use, Appl. Environ. Microbiol., 58, 3834, 10.1128/aem.58.12.3834-3836.1992
Jones, 2004, Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing, Wound Repair Regen., 12, 288, 10.1111/j.1067-1927.2004.012304.x
Kokura, 2010, Silver nanoparticles as a safe preservative for use in cosmetics, Nanomed. Nanotechnol. Biol. Med., 6, 570, 10.1016/j.nano.2009.12.002
Grabowska, 2019, Safety of the application of nanosilver and nanogold in topical cosmetic preparations, Colloids Surf. B Biointerfaces, 183, 110416, 10.1016/j.colsurfb.2019.110416
Cao, 2016, Gold nanomaterials in consumer cosmetics nanoproducts: Analyses, characterization, and dermal safety assessment, Small, 12, 5488, 10.1002/smll.201601574
Xu, 2012, Application of quality by design to formulation and processing of protein liposomes, Int. J. Pharm., 434, 349, 10.1016/j.ijpharm.2012.06.002
Joshny, 2017, Experimental optimization of Lornoxicam liposomes for sustained topical delivery, Eur. J. Pharm. Sci., 112, 31
Pardeike, 2008, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170, 10.1016/j.ijpharm.2008.10.003
Wissing, 2003, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm., 254, 65, 10.1016/S0378-5173(02)00684-1
Shreya Kaul, N.G., Verma, D., Mukherjee, S., and Nagaich, U. (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm.
Sakamoto, K., Lochhead, R.Y., Maibach, H.I., and Yamashita, Y. (2017). Nanotechnology in Cosmetics, in Cosmetic Science and Technology, Elsevier.
Beck, R., Guterres, S., and Pohlmann, A. (2011). Polymeric nanocapsules: Concepts and applications. Nanocosmetics and Nanomedicines, Springer.
Hosseinkhani, 2015, Novel biocompatible nanocapsules for slow release of fragrances on the human skin, New Biotechnol., 32, 40, 10.1016/j.nbt.2014.09.001
Pentek, T.N., Newenhouse, E., O’Brien, B., and Chauhan, A.S. (2017). Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules, 22.
Tadros, 2004, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci., 108, 303, 10.1016/j.cis.2003.10.023
Jafari, S.M., and McClements, D.J. (2018). Application of nanoemulsions in cosmetics. Nanoemulsions, Academic Press.
Ostrosky, 2015, Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent, Molecules, 20, 2492, 10.3390/molecules20022492
Musazzi, 2018, Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product?, Drug Deliv. Transl. Res., 88, 414, 10.1007/s13346-017-0390-7
Grumezescu, A.M. (2016). Nanobiomaterials in cosmetics: Current status and future prospects. Nanobiomaterials in Galenic Formulations and Cosmetics, William Andrew Publishing.
Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., and Heras, Á. (2018). Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 10.
Morganti, 2008, Chitin nanofibrils for advanced cosmeceuticals, Clin. Dermatol., 26, 334, 10.1016/j.clindermatol.2008.01.003
SCCS (2020, April 14). Opinion on Styrene/Acrylates Copolymer (Nano) and Sodium Styrene/Acrylates Copolymer (Nano). Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_218.pdf.
(2020, April 14). European Commission Asks for Scientific Advice on Safety of Nanomaterials Used in Cosmetics. Available online: https://euon.echa.europa.eu/view-article/-/journal_content/title/european-commission-asks-for-scientific-advice-on-safety-of-nanomaterials-used-in-cosmetics.
Tak, 2015, Shape-dependent skin penetration of silver nanoparticles: Does it really matter?, Sci. Rep., 55, 16908, 10.1038/srep16908
(2020, April 14). EC Nanomaterials. Available online: https://ec.europa.eu/growth/sectors/cosmetics/products/nanomaterials_en.
(2018). Catalogue of Nanomaterials in Cosmetic Products Placed on the Market, ENDS Europe. version 2.
F.T.F.R. (2020, April 14). Nanotechnology Task Force Report, Available online: https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007.
ICCR (2020, April 14). International Cooperation on Cosmetics Regulation. Available online: https://iccr-cosmetics.org/.