Nanoliposomal Growth Hormone and Sodium Nitrite Release from Silicone Fibers Reduces Thrombus Formation Under Flow

Springer Science and Business Media LLC - Tập 44 - Trang 2417-2430 - 2016
Nasim Salehi-Nik1,2, Ghassem Amoabediny1,2, Seyedeh Parnian Banikarimi1,2, Behdad Pouran3,4, Zahra Malaie-Balasi2, Behrouz Zandieh-Doulabi5, Jenneke Klein-Nulend5
1School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
3Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
4Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands
5Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands

Tóm tắt

Biocompatibility of artificial lungs can be improved by endothelialization of hollow fibers. Bioavailability of growth-inducing and anti-thrombotic agents on the hollow fiber–blood interface inhibits thrombosis. We investigated if nanoliposomal growth-inducing growth hormone (nGH) and anti-thrombotic sodium nitrite (nNitrite) incorporation into collagen-coating on silicone hollow fibers improves blood biocompatibility by increasing endothelial cell growth and nitrite bioavailability under flow. Nitrite production rate was assessed under varying flow conditions. Finite element (FE) modeling was used to simulate nitrite transport within the parallel-plate flow chamber, and nitrite bioavailability on the fiber–blood interface at 1–30 dyn/cm2 shear stress. Endothelial cell number on fibers coated with nNitrite-nGH-collagen conjugate was 1.5-fold higher than on collagen-coated fibers. For collagen-coated fibers, nitrite production reached a maximum at 18 dyn/cm2 shear stress. When fibers were coated with nNitrite-nGH-collagen conjugate, nitrite production increased continuously by increasing shear stress. FE modeling revealed that nitrite concentrations at the fiber–blood interface were affected by shear stress-induced nitrite production, and diffusion/convection-induced nitrite removal. Highest nitrite concentrations and lowest thrombus deposition were observed on fibers coated with nNitrite-nGH-collagen conjugate exposed to 6–12 dyn/cm2 shear stress. In conclusion, our results suggest that nNitrite-nGH-Col conjugate coatings promote endothelialization of silicone hollow fibers in biohybrid artificial lungs.

Tài liệu tham khảo

Abednejad, A. S., G. Amoabediny, and A. Ghaee. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization. Mat. Sci. Eng. C 42:443–450, 2014. Andrews, A. M., D. Jaron, D. G. Buerk, P. L. Kirby, and K. A. Barbee. Direct real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide 23:335–342, 2010. Betit, P. Extracorporeal membrane oxygenation: quo vadis? Respir. Care 54:948–957, 2009. Bridges, A. W., and A. J. García. Anti-Inflammatory polymeric coatings for implantable biomaterials and devices. J. Diabetes Sci. Technol. 2:984–994, 2008. Brown, A., G. Burke, and B. J. Meenan. Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol. Bioeng. 108:1148–1158, 2011. Butler, A. R., I. L. Megson, and P. G. Wright. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta 1425:168–176, 1998. Chen, K., and A. S. Popel. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic. Biol. Med. 41:668–680, 2006. Choi, H. W., and A. I. Barakat. Modulation of ATP/ADP concentration at the endothelial cell surface by flow: effect of cell topography. Ann. Biomed. Eng. 37:2459–2468, 2009. Doi, K., and T. Matsuda. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. J. Biomed. Mater. Res. 34:361–370, 1997. ElMeshad, A. N., S. M. Mortazavi, and M. R. Mozafari. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J. Liposome Res. 24:1–9, 2014. Fadel, A. A., K. A. Barbee, and D. Jaron. A computational model of nitric oxide production and transport in a parallel plate flow chamber. Ann. Biomed. Eng. 37:943–954, 2009. Huo, Y., J. S. Choy, M. Svendsen, A. K. Sinha, and J. S. Kassab. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree. J. Biomech. 42:594–602, 2009. Jokinen, J., E. Dadu, P. Nykvist, J. Kapyla, D. J. White, J. Ivaska, P. Vehvilainen, H. Reunanen, H. Larjava, L. Hakkinen, and J. Heino. Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279:31956–31963, 2004. Jun, H. W., L. J. Taite, and J. L. West. Nitric oxide-producing polyurethanes. Biomacromolecules 6:838–844, 2005. Kabirian, F., G. Amoabediny, N. Haghighipour, N. Salehi-Nik, and B. Zandieh-Doulabi. Nitric oxide secretion by endothelial cells in response to fluid shear stress, aspirin, and temperature. J. Biomed. Mater. Res. A 103:1231–1237, 2014. Kanai, A. J., H. C. Strauss, G. A. Truskey, A. L. Crews, S. Grunfeld, and T. Malinski. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77:284–293, 1995. Kavdia, M., and A. Popel. Wall shear stress differentially affects no level in arterioles for volume expanders and hb-based O2 carriers. Microvasc. Res. 66:49–58, 2003. Khachab, A., H. Tabesh, A. Kashefi, and K. Mottaghi. Novel concept for pure diffusive capillary membrane oxygenators: silicone hollow sphere (SiHSp) fibers. ACAIO J. 59:162–168, 2013. Lemon, G., M. L. Lim, F. Ajalloueian, and P. Macchiarini. The development of the bioartificial lung. Br. Med. Bull. 110:35–45, 2014. Li, G., P. Yang, W. Qin, M. F. Maitz, S. Zhou, and N. Huang. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 32:4691–4703, 2011. Lincoln, D. T., P. K. Singal, and A. Al-Banaw. Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation. Anticancer Res. 27:4201–4218, 2007. Mashour, G. A., and R. J. Boock. Effects of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res. 842:233–238, 1999. Mirahmadi, F., M. Tafazzoli-Shadpour, M. A. Shokrgozar, and S. Bonakdar. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 33:4786–4794, 2013. Mourtas, S., M. Kastellorizios, P. Klepetsanis, E. Farsari, E. Amanatides, D. Mataras, B. R. Pistillo, P. Favia, E. Sardella, R. d’Agostino, and S. G. Antimisiaris. Covalent immobilization of liposomes on plasma functionalized metallic surfaces. Colloids Surf. B 184:214–220, 2011. Perktold, K., M. Resch, and H. Florian. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J. Biomech. Eng. 113:46–475, 1991. Plata, A. M., S. J. Sherwin, and R. Krams. Endothelial nitric oxide production and transport in flow chambers: the importance of convection. Ann. Biomed. Eng. 38:2805–2816, 2010. Polk, A. A., T. M. Maul, D. T. McKeel, T. A. Snyder, C. A. Lehocky, B. Pitt, D. B. Stolz, W. J. Federspiel, and W. R. Wagner. A biohybrid artificial lung prototype with active mixing of endothelialized microporous hollow fibers. Biotechnol. Bioeng. 106:490–500, 2010. Salehi-Nik, N., G. Amoabediny, M. A. Shokrgozar, K. Mottaghy, J. Klein-Nulend, and B. Zandieh-Doulabi. Surface modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality. Biomed. Mater. 10:15–24, 2015. Salehi-Nik, N., G. Amoabediny, A. Solouk, M. A. Shokrgozar, B. Zandieh-Doulabi, and J. Klein-Nulend. Biomimetic modification of silicone tubes using sodium nitrite-collagen immobilization accelerates endothelialization. J. Biomed. Mater. Res. B 2015. doi:10.1002/jbm.b.33412. Smith, K., L. Moore, and H. Layton. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. Am. J. Physiol. Renal Physiol. 284:1080–1096, 2003. Solouk, A., B. G. Cousins, F. Mirahmadi, H. Mirzadeh, M. R. Jalali Nadoushan, M. A. Shokrgozar, and A. M. Seifalian. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility. Mater. Sci. Eng. C Mater. Biol. Appl. 46:400–408, 2015. Spijker, H. T., R. Graaff, P. W. Boonstra, H. J. Busscher, and W. van Oeveren. On the influence of flow conditions and wettability on blood material interactions. Biomaterials 24:4717–4727, 2003. Sprague, B., N. C. Chesler, and R. R. Magness. Shear stress regulation of nitric oxide production in uterine and placental artery endothelial cells: experimental studies and hemodynamic models of shear stresses on endothelial cells. Int. J. Dev. Biol. 54:331–339, 2010. Suchyta, D. J., H. Handa, and M. E. Meyerhoff. A nitric oxide-releasing heparin conjugate for delivery of a combined antiplatelet/anticoagulant agent. Mol. Pharm. 11:645–650, 2014. Takagi, M., K. Shiwaku, T. Inoue, Y. Shirakawa, Y. Sawa, H. Matsuda, and T. Yoshida. Hydrodynamically stable adhesion of endothelial cells onto a polypropylene hollow fiber membrane by modification with adhesive protein. J. Artif. Organs 6:222–226, 2003. Wissink, M. J. B., R. Beernink, A. A. Poot, G. H. Engbers, T. Beugeling, W. G. van Aken, and J. Feijen. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J. Control Release 64:103–114, 2000.