Nanofluid application in post SB-LOCA transient in VVER-1000 NPP
Tài liệu tham khảo
Bae, B.U., Yun, B.J., Bae, S.W., Choi, K.Y., Song, C.-H., Cheon, J., 2010. Analysis of condensation phenomena in PAFS (Passive Auxiliary Feedwater System) horizontal heat exchanger of APR+. In: Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 29–30.
Collier, 1994, 156
Das, 2008
Del Valle, 1985, Subcooled flow boiling at high heat flux, Int. J. Heat Mass Transf., 28, 1907, 10.1016/0017-9310(85)90213-3
Drew, 1993, 509
Garnier, 2001, Local measurements on flow boiling of refrigerant 12 in a vertical tube, Multiphase Sci. Technol., 13, 1, 10.1615/MultScienTechn.v13.i1-2.10
Hadad, 2008, U-series concentration in surface and ground water resources of Ardabil province, Rad. Prot. Dosimetry, 130, 309, 10.1093/rpd/ncn001
Hadad, 2010, Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy, 37, 1447, 10.1016/j.anucene.2010.06.020
Hadad, 2013, Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor, Ann. Nucl. Energy, 60, 287, 10.1016/j.anucene.2013.05.017
Hari, S., Hassan, Y.A., 2000. Refinement of the RELAP5/MOD3.2 subcooled boiling model for low-pressure conditions. In: Proceedings of the 8th International Conference ICONE-8, Baltimore, MD, USA.
Ishii, 1984, Two-fluid model and hydrodynamic constitutive relations, Nucl. Eng. Des., 82, 107, 10.1016/0029-5493(84)90207-3
Kim, 2010, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des., 240, 1186, 10.1016/j.nucengdes.2010.01.020
Kirillov, 2006
Kocamustafaogullari, 1995, Foundation of the interfacial area transport equation and its closure relations, Int. J. Heat Mass Transf., 38, 481, 10.1016/0017-9310(94)00183-V
Končar, 2010, Wall function approach for boiling two-phase flows, Nucl. Eng. Des., 240, 3910, 10.1016/j.nucengdes.2010.08.004
Končar, 2004, Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure, Int. J. Heat Mass Transf., 47, 1499, 10.1016/j.ijheatmasstransfer.2003.09.021
Kurul, N., Podowski, M.Z., 1990. Multidimensional effects in forced convection subcooled boiling. In: Proceedings of the ninth international heat transfer conference, Jerusalem, Israel, pp. 21–26.
Kurul, N., Podowski, M.Z., 1991. On the modeling of multi-dimensional effects in boiling channels. In: 27th National heat transfer conference, Minneapolis.
Lai, 1993, Numerical simulation of subcooled boiling and heat transfer in vertical ducts, Int. J. Heat Mass Transf., 36, 1541, 10.1016/S0017-9310(05)80064-X
Manon, E., 2000. Contribution à l’analyse et à la modélisation locale des écoulements boillants sous-saturés dans les conditions des Réacteurs à Eau sous Pression. Ecole Centrale Paris, November 2000 (PhD Thesis).
Mirmasoumi, 2008, Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. Therm. Eng., 28, 717, 10.1016/j.applthermaleng.2007.06.019
Nejadkoorki, 2011, The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach, Environ. Monit. Assess., 172, 215, 10.1007/s10661-010-1328-4
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Trans., 11, 151, 10.1080/08916159808946559
Porhemmat, 2015, PARCS cross-section library generator; part one: development and verification, Prog. Nucl. Energy, 78, 155, 10.1016/j.pnucene.2014.08.008
Şenocak, I. 2002. Computational methodology for the simulation of turbulent cavitating flows (Doctoral dissertation, University of Florida).
Wang, 2001, Dynamics of attached turbulent cavitating flows, Prog. Aerosp. Sci., 37, 551, 10.1016/S0376-0421(01)00014-8