Nanofibres for Clean Air Breathing
Tóm tắt
Air pollution is a global concern for human health. Air pollution leads to respiratory diseases, cancer, and even death. Tiny sized particulate matter (PM) and volatile organic compounds (VOCs) are the main health hazards in air. Functional nanofibres can trap these pollutants. This paper studied the electrospun nanofibre membrane (ENM) for protection against smaller PM (≤ 2.5 μm) and VOCs. The ENM of 1.2 g/m2 areal density was prepared using electrospinning. Due to the low ENM areal density, the air resistance was small, which makes it suitable for respiratory filtration. The ENM was characterised using scanning electron microscopy and capillary flow porometry. Its filtration efficiency and VOC adsorption capacity were determined using a typical laboratory set-up. The ENM showed excellent filtration efficiency (≥ 95%) for PM 0.3 μm. It also effectively adsorbed benzene VOC mainly due to its surface modification with β-cyclodextrin. The electrospun nanofibre membrane provides multifunctional protection and aids in pollution-free air breathing. This nanotechnology-based material has the potential to be used in air filtration for clean air.
Tài liệu tham khảo
J. Lelieveld, J. Evans, M. Fnais, D. Giannadaki, A. Pozzer, Nature 525, 367–371 (2015). https://doi.org/10.1038/nature15371
J.A. Bernstein, N. Alexis, C. Barnes, I.L. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S.M. Tarlo, P.B. Williams, J.A. Bernstein, J. Allergy Clin. Immunol. 114, 1116–1123 (2004). https://doi.org/10.1016/j.jaci.2004.08.030
H. Qiu, L. Tian, K. Ho, V.C. Pun, X. Wang, I.T.S. Yu, Environ. Pollut. 199, 192–197 (2015). https://doi.org/10.1016/j.envpol.2015.02.002
US-EPA, Air Quality Criteria for Particulate Matter Volume II. 2004, EPA/600/P-99/002bF USA.
T. Fedel, Filtr. Sep. 49, 37–39 (2012). https://doi.org/10.1016/S0015-1882(12)70289-6
V. Kadam, Multifunctional air filtration for respiratory protection using electrospun nanofibre membrane, in School of Fashion and Textiles, RMIT University: Melbourne. p. 182, (2018)
X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338, 102–123 (2017)
K. Thangadurai, G. Thilagavathi, A. Bhattacharyya, J. Text. Inst. 105, 1319–1326 (2014). https://doi.org/10.1080/00405000.2014.895089
I.M. Hutten, Handbook of Nonwoven Filter Media, 1st edn. (Butterworth-Heinemann, Oxford, 2007), pp. 245–290
R.C. Brown, Am. Ind. Hyg. Assoc. J. 62, 633–643 (2001)
V.V. Kadam, L. Wang, R. Padhye, J. Ind. Text. 47, 2253–2280 (2018). https://doi.org/10.1177/1528083716676812
S. Sundarrajan, K.L. Tan, S.H. Lim, S. Ramakrishna, Procedia Eng. 75, 159–163 (2014). https://doi.org/10.1016/j.proeng.2013.11.034
R.S. Barhate, S. Ramakrishna, J. Membr. Sci. 296, 1–8 (2007). https://doi.org/10.1016/j.memsci.2007.03.038
N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28, 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298–5415 (2019)
C. Liu, P.C. Hsu, H.W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, Nat. Commun. 6, 6205 (2015). https://doi.org/10.1038/ncomms7205
N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S.S. Al-Deyab, B. Ding, Sep. Purif. Technol. 126, 44–51 (2014). https://doi.org/10.1016/j.seppur.2014.02.017
A. Patanaik, V. Jacobs, R.D. Anandjiwala, J. Membr. Sci. 352, 136–142 (2010). https://doi.org/10.1016/j.memsci.2010.02.009
J. Matulevicius, L. Kliucininkas, T. Prasauskas, D. Buivydiene, D. Martuzevicius, J. Aerosol. Sci. 92, 27–37 (2016). https://doi.org/10.1016/j.jaerosci.2015.10.006
V. Kadam, I.L. Kyratzis, Y.B. Truong, J. Schutz, L. Wang, R. Padhye, Sep. Purif. Technol. 224, 247–254 (2019). https://doi.org/10.1016/j.seppur.2019.05.033
R. Zhao, Y. Wang, X. Li, B. Sun, C. Wang, A.C.S. Appl, Mater. Interfaces. 7, 26649–26657 (2015). https://doi.org/10.1021/acsami.5b08403
T. Uyar, R. Havelund, Y. Nur, A. Balan, J. Hacaloglu, L. Toppare, F. Besenbacher, P. Kingshott, J. Membr. Sci. 365, 409–417 (2010). https://doi.org/10.1016/j.memsci.2010.09.037
T. Uyar, R. Havelund, Y. Nur, J. Hacaloglu, F. Besenbacher, P. Kingshott, J. Membr. Sci. 332, 129–137 (2009). https://doi.org/10.1016/j.memsci.2009.01.047
A. Celebioglu, H.S. Sen, E. Durgun, T. Uyar, Chemosphere 144, 736–744 (2016). https://doi.org/10.1016/j.chemosphere.2015.09.029
D. Noreña-Caro, M. Álvarez-Láinez, Mater. Des. 95, 632–640 (2016)
V. Kadam, Y.B. Truong, C. Easton, S. Mukherjee, L. Wang, R. Padhye, I.L. Kyratzis, A.C.S. Appl, Nano Mater. 1, 4268–4277 (2018). https://doi.org/10.1021/acsanm.8b01056
V. Kadam, I.L. Kyratzis, Y.B. Truong, L. Wang, R. Padhye, J. Appl. Polym. Sci. 137, 49228 (2020). https://doi.org/10.1002/app.49228
B. Maze, T.H. Vahedi, Q. Wang, B. Pourdeyhimi, J. Aerosol Sci. 38, 550–571 (2007). https://doi.org/10.1016/j.jaerosci.2007.03.008
E.M.M. Del Valle, Process Biochem. 39, 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9