Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions

Chemical Research in Chinese Universities - Tập 37 - Trang 456-463 - 2021
Haiyan Li1, Mingyue Liu1, Xiaoyu Wang1, Hongsheng Wang1, Xiumei Mo1, Jinglei Wu1,2
1Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P. R. China
2Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China

Tóm tắt

Electrospun nanofibers are of the same length scale as the native extracellular matrix and have been extensively reported to facilitate adhesion and proliferation of cells and to promote tissue repair and regeneration. With a primary focus on tissue repair and regeneration using electrospun scaffolds, only a few studies involved electrospun nanofiber scaffolds directing cell behaviors have been reported. In this study, we prepared electrospun nanofiber scaffolds with distinct fiber configurations, namely, random and aligned orientations of nanofibers, as well as oriented yarns, and investigated their effects on cell behaviors. Our results showed that these scaffolds supported good proliferation and viability of murine fibroblasts. Fiber configuration profoundly influenced cell morphology and orientation but showed no effects on cell proliferation rate. The yarn scaffold had comparable total protein accumulation with the random and aligned scaffolds, but it supported a greater proliferation rate of fibroblasts with significantly elevated collagen deposition due to its porous fibrous configuration. Cell-seeded yarn scaffolds showed a greater Young’s modulus compared with cell-free controls as early as 1 week. Together with its unique fiber configuration similar to the native extracellular matrix of the myocardium, the yarn scaffold might be a suitable matrix material for modeling cardiac fibrotic disorders.

Tài liệu tham khảo

Zhu T., Gu H., Zhang H., Wang H., Xia H., Mo X., Wu J., Acta Biomater., 2021, 119, 211 Dziemidowicz K., Sang Q., Wu J., Zhang Z., Zhou F., Lagaron J. M., Mo X., Parker G. J. M., Yu D.-G., Zhu L.-M., Williams G. R., J. Mater. Chem. B, 2021, 9, 939 Wu T., Mo X., Xia Y., Adv. Healthcare Mater., 2020, 9, 1901761 Lin W., Chen M., Qu T., Li J., Man Y., J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108, 1311 Yeo M., Kim G., Acta Biomater., 2020, 107, 102 Chen H., Lui Y. S., Tan Z. W., Lee J. Y. H., Tan N. S., Tan L. P., Adv. Healthcare Mater., 2019, 8, 1801378 Abou Neel E. A., Bozec L., Knowles J. C., Syed O., Mudera V., Day R., Hyun J. K., Adv. Drug Del. Rev., 2013, 65, 429 DeLeon-Pennell K. Y., Barker T. H., Lindsey M. L., Matrix Biol., 2020, 91/92, 1 Humeres C., Frangogiannis N. G., JACC Basic Transl. Sci., 2019, 4, 449 Jin J., Togo S., Kadoya K., Tulafu M., Namba Y., Iwai M., Watanabe J., Nagahama K., Okabe T., Hidayat M., Kodama Y., Kitamura H., Ogura T., Kitamura N., Ikeo K., Sasaki S., Tominaga S., Takahashi K., Respir. Res., 2019, 20, 119 Sacchi M., Bansal R., Rouwkema J., Trends Biotechnol., 2020, 6, 623 Wu J., Huang C., Liu W., Yin A., Chen W., He C., Wang H., Liu S., Fan C., Bowlin G. L., Mo X., J. Biomed. Nanotechnol., 2014, 10, 603 Wu J., Liu S., He L., Wang H., He C., Fan C., Mo X., Mater. Lett., 2012, 89, 146 Wu T., Zheng H., Chen J., Wang Y., Sun B., Morsi Y., El-Hamshary H., Al-Deyab S. S., Chen C., Mo X., J. Mater. Chem. B, 2017, 5, 139 Zhang K., Cao N., Guo X., Zou Q., Zhou S., Yang R., Zhao W., Mo X., Liu W., Fu Q., Neurourol. Urodyn., 2018, 37, 978 Wang X., Zhu J., Sun B., Jin Q., Li H., Xia C., Wang H., Mo X., Wu J., J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109, 201 Liu X., He X., Jin D., Wu S., Wang H., Yin M., Aldalbahi A., El-Newehy M., Mo X., Wu J., Acta Biomater., 2020, 108, 207 Molina E. R., Chim L. K., Salazar M. C., Mehta S. M., Menegaz B. A., Lamhamedi-Cherradi S.-E., Satish T., Mohiuddin S., McCall D., Zaske A. M., Cuglievan B., Lazar A. J., Scott D. W., Grande-Allen J. K., Ludwig J. A., Mikos A. G., Acta Biomater., 2019, 100, 38 Feng B., Wang S., Hu D., Fu W., Wu J., Hong H., Domian I. J., Li F., Liu J., Acta Biomater., 2019, 83, 211 Jia Y., Yang W., Zhang K., Qiu S., Xu J., Wang C., Chai Y., Acta Biomater., 2019, 83, 291 Xu Y., Wu J., Wang H., Li H., Di N., Song L., Li S., Li D., Xiang Y., Liu W., Mo X., Zhou Q., Tissue Eng. Part C: Methods, 2013, 19, 925 Kong M., Lee J., Yazdi I. K., Miri A. K., Lin Y.-D., Seo J., Zhang Y. S., Khademhosseini A., Shin S. R., Adv. Healthc. Mater., 2019, 8, 1801146 Huang S., Chen B., Su Y., Alex L., Humeres C., Shinde A. V., Conway S. J., Frangogiannis N. G., J. Mol. Cell. Cardiol., 2019, 132, 84 Ng-Blichfeldt J.-P., Jong T. D., Kortekaas R. K., Wu X., Lindner M., Guryev V., Hiemstra P. S., Stolk J., Königshoff M., Gosens R., Am. J. Physiol. Lung Cell Mol. Physiol., 2019, 317, L14 Daseke M. J., Tenkorang M. A. A., Chalise U., Konfrst S. R., Lindsey M. L., Matrix Biol., 2020, 91/92, 109 Deddens J. C., Sadeghi A. H., Hjortnaes J., van Laake L. W., Buijsrogge M., Doevendans P. A., Khademhosseini A., Sluijter J. P., Adv. Healthcare Mater., 2017, 6, 1600571 Tao Z.-W., Wu S., Cosgriff-Hernandez E. M., Jacot J. G., Acta Biomater., 2020, 101, 206 Huang K., Ozpinar E. W., Su T., Tang J., Shen D., Qiao L., Hu S., Li Z., Liang H., Mathews K., Scharf V., Freytes D. O., Cheng K., Sci. Transl. Med., 2020, 12, 538 Vainio L. E., Szabó Z., Lin R., Ulvila J., Yrjölä R., Alakoski T., Piuhola J., Koch W. J., Ruskoaho H., Fouse S. D., Seeley T. W., Gao E., Signore P., Lipson K. E., Magga J., Kerkelä R., JACC Basic Transl. Sci., 2019, 4, 83 Fix C., Carver-Molina A., Chakrabarti M., Azhar M., Carver W., J. Cell. Physiol., 2019, 234, 13931 Asmani M., Velumani S., Li Y., Wawrzyniak N., Hsia I., Chen Z., Hinz B., Zhao R., Nat. Commun., 2018, 9, 2066 Yong K. W., Li Y., Huang G., Lu T. J., Safwani W. K., Pingguan-Murphy B., Xu F., Am. J. Physiol. Heart Circ. Physiol., 2015, 309, H532 Savoji H., Mohammadi M. H., Rafatian N., Toroghi M. K., Wang E. Y., Zhao Y., Korolj A., Ahadian S., Radisic M., Biomaterials, 2019, 198, 3 Henderson N. C., Rieder F., Wynn T. A., Nature, 2020, 587, 555 Karsdal M. A., Nielsen S. H., Leeming D. J., Langholm L. L., Nielsen M. J., Manon-Jensen T., Siebuhr A., Gudmann N. S., Rønnow S., Sand J. M., Daniels S. J., Mortensen J. H., Schuppan D., Adv. Drug Del. Rev., 2017, 121, 43