Nanoelectronics from the bottom up

Nature Materials - Tập 6 Số 11 - Trang 841-850 - 2007
Wei Lü1, Charles M. Lieber2
1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA
2Department of Chemistry and Chemical Biology, and School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Technology Roadmap for Semiconductors 2005 edn, available online at http://public.itrs.net/.

Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

Likharev, K. K. in Nano and Giga Challenges in Microelectronics (eds Greer, J., Korkin, A. & Labanowski, J.) 27–68 (Elsevier, Amsterdam, 2003).

McEuen, P. L., Fuhrer, M. S. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002).

Lieber, C. M. Nanoscale science and technology: building a big future from small things. Mater. Res. Soc. Bull. 28, 486–491 (2003).

Heath, J. R., Kuekes, P. J. Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998).

Stan, M. R., Franzon, P. D., Goldstein, S. C., Lach, J. C. & Ziegler, M. M. Molecular electronics: from devices and interconnect to circuits and architecture. Proc. IEEE 91, 1940–1957 (2003).

DeHon, A. Array-based architecture for FET-based, nanoscale electronics. IEEE Trans. Nanotechnol. 2, 23–32 (2003).

Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

Chen, Y. et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 462–468 (2003).

Duan, X. F., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002).

Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U. & Torres, C. M. S. Nanoimprint lithography: challenges and prospects. Nanotechnology 12, 91–95 (2001).

Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

Brueck, S. R. J. in International Trends in Applied Optics (eds Guenther, A. H. & Holst, G. C.) 85–110 (SPIE, Bellingham, Washington, 2002).

Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005).

Strukov, D. B. & Likharev, K. K. Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16, 137–148 (2005).

Snider, G. S. & Williams, R. S. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007).

Snider, G. S. Computing with hysteretic resistor crossbars. Appl. Phys. A. 80, 1165–1172 (2005).

Kuekes, P. J., Stewart, D. R. & Williams, R. S. The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J. Appl. Phys. 97, 034301 (2003).

Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001).

Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

Lau, C. N., Stewart, D. R., Williams, R. S. & Bockrath, M. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4, 569–572 (2004).

Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

Seminario, J. M., Zacarias, A. G. & Tour, J. M. Theoretical study of a molecular resonant tunneling diode. J. Am. Chem. Soc. 122, 3015–3020 (2000).

Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000).

Chen, J. et al. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77, 1224–1226 (2000).

Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

Nantero; http://www.nantero.com/index.html.

Owen, A. E., Lecomber, P. G., Hajto, J., Rose, M. J. & Snell, A. Switching in amorphous devices. Int. J. Electron. 73, 897–906 (1992).

Jafar, M. & Haneman, D. Switching in amorphous-silicon devices. Phys. Rev. B 49, 13611–13615 (1994).

Scott, J. C. Is there an immortal memory? Science 304, 62 (2004).

Kuekes, P. J., Robinett, W. & Williams, R. S. Improved voltage margins using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronics. Nanotechnology 16, 1419–1432 (2005).

Hu, J., Branz, H. M., Crandall, R. S., Ward, S. & Wang, Q. Switching and filament formation in hot-wire CVD p-type a-Si:H devices. Thin Solid Films 430, 249–252 (2003).

Avila, A. & Asomoza, R. Switching in coplanar amorphous hydrogenated silicon devices. Solid State Electron. 44, 17–27 (2000).

Goronkin, H. & Yang, Y. High-performance emerging solid-state memory technologies. Mater. Res. Soc. Bull. 29, 805–808 (2004).

Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

Jung, Y., Lee, S.-H., Ko, D.-K. & Agarwal, R. Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc 128, 14026–14027 (2006).

Lee, S.-H., Ko, D.-K., Jung, Y. & Agarwal, R. Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006).

Yu, D., Wu, J., Gu, Q. & Park, H. Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148–8149 (2006).

Meister, S. et al. Synthesis and characterization of phase-change nanowires. Nano Lett 6, 1514–1517 (2006).

Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

DeHon, A., Lincoln, P. & Savage, J. E. Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans. Nanotechnol. 2, 165–174 (2003).

Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

Yang, C., Zhong, Z. & Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304–1307 (2005).

Kuekes, P. J. et al. Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes. Nanotechnology 17, 1052–1061 (2006).

Likharev, K. K. & Strukov, D. B. in Introducing Molecular Electronics (eds Cuniberti, G., Fagas, G. & Richter, K.) 447–477 (Springer, Berlin, 2005).

Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

Jung, G. Y. et al. Fabrication of multi-bit crossbar circuits at sub-50 nm half-pitch by using UV-based nanoimprint lithography. J. Photopolym. Sci. Technol. 18, 565–570 (2005).

Javey, A., Nam, S. W., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007).

Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 100–104 (2006).