Nanocrystal bilayer for tandem catalysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Centi, G. & Perathoner, S. Catalysis: role and challenges for a sustainable energy. Top. Catal. 52, 948–961 (2009).
Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
Ott, L. S. & Finke, R. G. Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord. Chem. Rev. 251, 1075–1100 (2007).
Somorjai, G. A., Frei, H. & Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131, 16589–16605 (2009).
Somorjai, G. A., Tao, F. & Park, J. Y. The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Top. Catal. 47, 1–14 (2008).
Si, R. & Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au–CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008).
Xie, X. W., Li, Y., Liu, Z. Q., Haruta, M. & Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).
Stakheev, A. Y. & Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl. Catal. A 188, 3–35 (1999).
Jackson, S. D. et al. Supported metal catalysts: preparation, characterization, and function. 5. Activities and selectivities of platinum catalysts in the reactions of cyclopropane, ethene, 1,3-butadiene, and 2-butyne with dihydrogen. J. Catal. 162, 10–19 (1996).
Jackson, S. D., Kelly, G. J. & Webb, G. Supported metal catalysts; preparation, characterisation, and function – Part VI. Hydrogenolysis of ethane, propane, n-butane and iso-butane over supported platinum catalysts. J. Catal. 176, 225–234 (1998).
Zhou, Z., Kooi, S., Flytzani-Stephanopoulos, M. & Saltsburg, H. The role of the interface in CO oxidation on Au/CeO2 multi-layer nanotowers. Adv. Funct. Mater. 18, 2801–2807 (2008).
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).
Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 6, 115–121 (2007).
Aliaga, C. et al. Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV–ozone treatment. J. Phys. Chem. C 113, 6150–6155 (2009).
Ungváry, F. in Encyclopedia of Catalysis Vol. 3 (ed. Horvath, I. T.) pp 734–787 (John Wiley, 2003).
Croy, J. R. et al. Support dependence of MeOH decomposition over size-selected Pt nanoparticles. Catal. Lett. 119, 209–216 (2007).
Naito, S. & Tanimoto, M. Effect of sodium cation addition on the hydroformylation of propane over silica-supported Group VIII metal catalysts. Chem. Commun. 1403–1404 (1989).
Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824–7828 (2006).
Yang, S. & Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330–9331 (2006).
Contreras, A. M., Yan, X.-M., Kwon, S., Bokor, J. & Somorjai, G. A. Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports. Catal. Lett. 111, 5–13 (2006).
Kweskin, S. J. et al. Carbon monoxide adsorption and oxidation on monolayer films of cubic platinum nanoparticles investigated by infrared–visible sum frequency generation vibrational spectroscopy. J. Phys. Chem. B 110, 15920–15925 (2006).
Panagiotopoulou, P. & Kondarides, D. I. A comparative study of the water–gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3, MOx/TiO2) metal oxide carriers. Catal. Today 127, 319–329 (2007).