Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk

Nature Materials - Tập 9 Số 4 - Trang 359-367 - 2010
Sinan Keten1, Zhi Ping Xu1, Britni Ihle1, Markus J. Buehler2
1Department of Civil and Environmental Engineering, Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, Massachusetts 02139, USA
2Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

Shao, Z. Z. & Vollrath, F. Materials: Surprising strength of silkworm silk. Nature 418, 741–741 (2002).

Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Prog. Polymer Sci. 32, 991–1007 (2007).

Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).

Du, N. et al. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91, 4528–4535 (2006).

Lee, S. M. et al. Greatly increased toughness of infiltrated spider silk. Science 324, 488–492 (2009).

Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008).

Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

Lefevre, T., Rousseau, M. E. & Pezolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92, 2885–2895 (2007).

van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002).

Thiel, B. L., Guess, K. B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41, 703–719 (1997).

Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743–748 (2008).

Keten, S. & Buehler, M. J. Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 100, 198301 (2008).

Rousseau, M. E., Lefevre, T., Beaulieu, L., Asakura, T. & Pezolet, M. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5, 2247–2257 (2004).

Grubb, D. T. & Jelinski, L. W. Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30, 2860–2867 (1997).

Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

Lee, E. H., Gao, M., Pinotsis, N., Wilmanns, M. & Schulten, K. Mechanical strength of the titin Z1Z2-telethonin complex. Structure 14, 497–509 (2006).

Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Struct. Biol. 10, 731–737 (2003).

Eom, K., Li, P. C., Makarov, D. E. & Rodin, G. J. Relationship between the mechanical properties and topology of cross-linked polymer molecules: Parallel strands maximize the strength of model polymers and protein domains. J. Phys. Chem. B 107, 8730–8733 (2003).

Sulkowska, J. I. & Cieplak, M. Mechanical stretching of proteins—a theoretical survey of the Protein Data Bank. J. Phys. Condens. Matter 19, 283201 (2007).

Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mater. 8, 175–188 (2009).

Schwaiger, I., Sattler, C., Hostetter, D. R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nature Mater. 1, 232–235 (2002).

Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007).

Ma, B. & Nussinov, R. Molecular dynamics simulations of the unfolding of beta(2)-microglobulin and its variants. Protein Eng. 16, 561–575 (2003).

Brooks, C. L. Methodological advances in molecular-dynamics simulations of biological-systems. Curr. Opin. Struct. Biol. 5, 211–215 (1995).

Fossey, S. A., Nemethy, G., Gibson, K. D. & Scheraga, H. A. Conformational energy studies of beta-sheets of model silk fibroin peptides 1. Sheets of poly(Ala–Gly) chains. Biopolymers 31, 1529–1541 (1991).

Shao, Z. Z. & Vollrath, F. The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40, 1799–1806 (1999).

Oroudjev, E. et al. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proc. Natl Acad. Sci. USA 99, 6460–6465 (2002).

Sirichaisit, J., Brookes, V. L., Young, R. J. & Vollrath, F. Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4, 387–394 (2003).

Pampaloni, F. et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl Acad. Sci. USA 103, 10248–10253 (2006).

Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

Connor, J. J. MIT-Prentice Hall Series on Civil, Environmental, and Systems Engineering xiv 53–56 (Prentice Hall Pearson Education, 2003).

Krasnov, I. et al. Mechanical properties of silk: Interplay of deformation on macroscopic and molecular length scales. Phys. Rev. Lett. 100, 048104 (2008).

Philip, M. C. et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 5, 401–410 (1994).

Ko, F. K. & Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5, 780–785 (2004).

Keten, S. & Buehler, M. J. Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).

Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

Hartmann, M. A. & Fratzl, P. Sacrificial ionic bonds need to be randomly distributed to provide shear deformability. Nano Lett. 9, 3603–3607 (2009).

Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nature Mater. 2, 810–814 (2003).

LeDuc, P. R. & Robinson, D. N. Using lessons from cellular and molecular structures for future materials. Adv. Mater. 19, 3761–3770 (2007).

Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

Porter, D. & Vollrath, F. The role of kinetics of water and amide bonding in protein stability. Soft Matter. 4, 328–336 (2008).

Claessens, M. M. A. E., Bathe, M., Frey, E. & Bausch, A. R. Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nature Mater. 5, 748–753 (2006).

Xiao, S. B., Stacklies, W., Cetinkaya, M., Markert, B. & Grater, F. Mechanical response of silk crystalline units from force-distribution analysis. Biophys. J. 96, 3997–4005 (2009).

Nelson, M. T. et al. NAMD: A parallel, object oriented molecular dynamics program. Int. J. Supercomputer Appl. High Performance Comput. 10, 251–268 (1996).

MacKerell, A. D. et al. All-atom empirical potential for molecular modelling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).