Nanocomposite hydrogels for biomedical applications

Biotechnology and Bioengineering - Tập 111 Số 3 - Trang 441-453 - 2014
Akhilesh K. Gaharwar1, Nicholas A. Peppas2, Ali Khademhosseini3,4,5
1Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
2Departments of Chemical Engineering, Biomedical Engineering and Pharmacy, The University of Texas at Austin, Austin, Texas, 78712
3Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02139
4Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
5Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115

Tóm tắt

ABSTRACTHydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon‐based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. Biotechnol. Bioeng. 2014;111: 441–453. © 2013 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201303233

10.1126/science.1130557

10.1016/j.progpolymsci.2008.10.002

10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N

10.1021/nn401196a

10.1002/adma.201301034

10.1126/science.1171643

10.1038/nnano.2011.160

10.1021/ar900226q

10.1021/jp015591

10.1021/bm200027z

10.1002/mabi.201100508

10.1002/adma.201300584

10.1016/j.msec.2012.12.099

10.1016/j.actbio.2011.07.023

10.1002/marc.201000556

10.1002/adfm.200901606

10.1166/jnn.2009.1265

10.1016/S1359-6446(04)03276-3

10.1016/j.jconrel.2013.10.017

10.1126/science.1067404

10.1016/j.biomaterials.2011.01.004

10.2174/156802608785849067

10.1016/j.biomaterials.2007.07.021

10.1073/pnas.0507681102

10.1038/scientificamerican0509-64

10.1002/adma.200904179

10.1016/j.progpolymsci.2010.07.005

10.1126/science.8493529

10.1021/la301541d

10.1021/nn302874v

Liu T, 2010, Polymer nanotube nanocomposites: Synthesis, properties and applications, 141

10.1016/S0065-2377(03)29004-9

Lowman AM, 1999, Encyclopedia of controlled drug delivery, 397

10.1016/j.compositesa.2010.07.003

10.1002/jbm.a.20076

10.1002/jbm.a.31284

10.1016/j.matlet.2010.10.053

10.1002/adma.200501612

Peppas NA, 2007, Nanotechnology in therapeutics: Current technology and applications

10.1146/annurev.bioeng.2.1.9

10.1002/jbm.a.20011

10.1007/s00396-008-1949-0

10.1002/mabi.201000053

Seidlits S, 2007, Nanotechnology in therapeutics: Current technology and applications, 317

10.1002/adma.200802205

10.1021/nn203711s

10.1021/nn305559j

10.1002/adma.201001436

10.1039/c3sm27352k

10.1002/adma.200802106

10.1021/bm050663e

10.1038/nmat2614

Thomas J, 2006, Nanomaterials handbook, 605

10.1002/bit.22361

10.1021/nl401088b

10.1038/nature08693

10.1016/S1359-6462(01)00873-9

10.3390/ma3052986

10.1021/bm301825q

10.1002/jbm.a.32188