Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims

Bio-Design and Manufacturing - Tập 2 Số 3 - Trang 187-212 - 2019
Sania Naz1, Joham Sarfraz Ali1, Muhammad Zia1
1Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017

Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277

Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278

Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314

Akil H, Omar MF, Mazuki AA, Safiee SZ, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Biores Technol 99(6):1664–1671

Amin MC, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473

Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries. Biores Technol 99:4661–4667

Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626

Bacakova L, Novotná K, Parizek M (2014) Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res 1(63):S29

Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):320–330

Banthia N, Majdzadeh F, Wu J, Bindiganavile V (2014) Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cement Concr Compos 1(48):91–97

Barbash VA, Yaschenko OV, Shniruk OM (2017) Preparation and properties of nanocellulose from Organosolv straw pulp. Nanoscale Res Lett 12(1):241

Barud HS, Assunção RM, Martines MA, Dexpert-Ghys J, Marques RF, Messaddeq Y, Ribeiro SJ (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46(3):363–367

Beck S, Bouchard J, Berry R (2010) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12(1):167–172

Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(3):201–207

Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

Biao H, Li-rong T, Da-song D, Wen O, Tao L, Xue-rong C (2011) Preparation of nanocellulose with cation–exchange resin catalysed hydrolysis. In: Biomaterials science and engineering. InTech

Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):8889–8901

Bokranz W, Wang X, Tschäpe H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54(12):1171–1182

Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

Brown EE, Laborie MP (2007) Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites. Biomacromol 8(10):3074–3081

Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Composites Part A Appl Sci Manuf 36(11):1486–1493

Cao Y, Weiss J, Youngblood J, Moon R, Zavattieri P (2013) Performance-enhanced cementitious materials by cellulose nanocrystal additions. Prod Appl Cellul Nanomater 2

Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370–1374

Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102

Castro-Guerrero CF, Díaz-Guillén MR, Delgado-Arroyo F, Rodas-Grapain A, Godavarthi S (2016) Purification of cellulose from rice husk for the synthesis of nanocellulose. In: 2016 IEEE 16th international conference on nanotechnology (IEEE-NANO), IEEE, pp 569–572

Cervin N, Aulin C, Larsson P et al (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose (London) 19(2):401

Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

Cheng KC, Catchmark JM, Demirci A (2009) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16(6):1033

Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627

Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725

Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur 12(4):69–72

Coelho de Carvalho Benini KC, Voorwald HJ, Cioffi MO, Milanese AC, Ornaghi HL Jr (2017) Characterization of a new lignocellulosic fiber from Brazil: Imperata brasiliensis (Brazilian Satintail) as an alternative source for nanocellulose extraction. J Nat Fib 14(1):112–125

Corrêa AC, de Morais TE, Pessan LA, Mattoso LH (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192

Cowie J, Bilek E, Wegner TH, Shatkin JA (2014) Market projections of cellulose nanomaterial-enabled products. Tappi J 13(6):57–69

Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151

Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(9):5105–5122

Dahman Y, Jayasuriya KE, Kalis M (2010) Potential of biocellulose nanofibers production from agricultural renewable resources: preliminary study. Appl Biochem Biotechnol 162(6):1647–1659

De Azeredo HM, Rosa MF, De Sá M, Souza Filho M, Waldron KW (2014) The use of biomass for packaging films and coatings. In: Advances in biorefineries, pp 819–874

de Morais TE, Corrêa AC, Manzoli A, de Lima LF, de Oliveira CR, Mattoso LH (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606

de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090

Deng MC, Wu YL (2008) The effect of surfactant on the production of bacterial cellulose from Acetobacter xylinum. Food Res Dev 7:013

Dourado F, Fontão A, Leal M, Rodrigues AC, Gama M (2017) Process modeling and techno-economic evaluation of an industrial bacterial nanocellulose fermentation process. In: Bacterial nanocellulose, pp 199–214

Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 1(35):299–320

Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417

Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W (2010) current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1

Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65

El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3(4):1196–1217

Emons AM, Mulder BM (2000) How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci 5(1):35–40

Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr Polym 20(151):1068–1072

Figueiredo AG, Figueiredo AR, Alonso-Varona A, Fernandes S, Palomares T, Rubio-Azpeitia E, Barros-Timmons A, Silvestre AJ, Pascoal Neto C, Freire CS (2013) Biocompatible bacterial cellulose-poly (2-hydroxyethyl methacrylate) nanocomposite films. Biomed Res Int 2013:698141

Fink H, Faxälv L, Molnar GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6(3):1125–1130

Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22(24):12349–12357

Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(3):208–213

George J, Sajeevkumar VA, Kumar R, Ramana KV, Sabapathy SN, Bawa AS (2008) Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose. J Polym Sci 108(3):1845–1851

Gillis M, Kersters K, Gossele F, Swings J, De Ley J, MacKenzie AR, Bousfield IJ (1983) Rediscovery of Bertrand’s sorbose bacterium (Acetobacter aceti subsp. xylinum): Proposal to designate NCIB 11664 in place of NCIB 4112 (ATCC 23767) as the type strain of Acetobacter aceti subsp. xylinum. Int J Syst Evol Microbiol 33(1):122–124

Goelzer FD, Faria-Tischer PC, Vitorino JC, Sierakowski MR, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng C 29(2):546–551

Gomes FP, Silva NH, Trovatti E, Serafim LS, Duarte MF, Silvestre AJ, Neto CP, Freire CS (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 1(55):205–211

Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sour 196(8):4102–4108

Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioengin 26(1):46–52

Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45(3):820–831

Gu R, Kokta BV, Frankenfeld K, Schlufter K (2010) Bacterial cellulose reinforced thermoplastic composites: preliminary evaluation of fabrication and performance. Bioresources 5(4):2195–2207

Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037

Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93

Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25(4):812

Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453

Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585

Hill K, Swiecki B, Cregger J (2012) The bio-based materials automotive value chain. Center Autom Res 112

Hossain AS, Uddin MM (2016) Nano-cellulose production from date palm plant biomass. Adv Biores 7(5)

Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators B Chem 157(2):554–559

Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060

Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 20(136):198–202

Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980

Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8(6):1973–1978

Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112

Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466

Jagannath A, Kalaiselvan A, Manjunatha SS, Raju PS, Bawa AS (2008) The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J Microbiol Biotechnol 24(11):2593

Jean B, Heux L, Dubreuil F, Chambat G, Cousin F (2008) Non-electrostatic building of biomimetic cellulose—xyloglucan multilayers. Langmuir 25(7):3920–3923

Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 20(122):60–68

Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications–a review of recent developments. Bioresources 7(2):2506–2552

John MJ, Anandjiwala RD (2009) Chemical modification of flax reinforced polypropylene composites. Compos Part A Appl Sci Manuf 40(4):442–448

John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

Jorfi M, Skousen JL, Weder C, Capadona JR (2014) Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 12(1):011001

Joy J, Jose C, Varanasi SB, Mathew P, Thomas S, Pilla S (2016) Preparation and characterization of poly (butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant. J Renew Mater 4(5):351–364

Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol 101(10):3602–3608

Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MS, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126

Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479

Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. Springer, New York

Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 1(87):287–296

Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Exp Polym Lett 1(9):546–575

Kato N, Sato T, Kato C, Yajima M, Sugiyama J, Kanda T, Mizuno M, Nozaki K, Yamanaka S, Amano Y (2007) Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles 11(5):693–698

Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72(2):291

Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18(4):739–744

Kim SS, Lee SY, Park KJ, Park SM, An HJ, Hyun JM, Choi YH (2017) Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. J Biol Sci 24(2):314–319

Kiziltas A, Nazari B, Gardner DJ, Bousfield DW (2014) Polyamide 6–cellulose composites: effect of cellulose composition on melt rheology and crystallization behavior. Polym Eng Sci 54(4):739–746

Kiziltas EE, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 20(129):148–155

Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie Inter Ed 44(22):3358–3393

Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Polysaccharides Ii, Springer, Berlin, pp 49–96

Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie Inter Ed 50(24):5438–5466

Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Biores Technol 77(2):193–196

Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335

Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

Lee DS, Yam KL, Piergiovanni L (2008) Food packaging science and technology. CRC Press, New York

Lee KY, Quero F, Blaker JJ, Hill CA, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3):595–605

Lee CM, Gu J, Kafle K, Catchmark J, Kim SH (2015) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 20(133):270–276

Legeza VI, Galenko-Yaroshevskii VP, Zinovèv EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138(9):311–315

Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJ, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517(3):1016–1020

Li ZQ, Zhou XD, Pei CH (2010) Preparation and characterization of bacterial cellulose/polylactide nanocomposites. Poly-Plast Technol Eng 49(2):141–146

Liang Y, He P, Ma Y, Zhou Y, Pei C, Li X (2009) A novel bacterial cellulose-based carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 11(5):1018–1021

Liang HW, Guan QF, Song LT, Yao HB, Lei X, Yu SH (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4(6):e19

Limaye SY, Subramanian S, Evans BR, O’neill HM, Inventors; UT-Battelle LLC, Assignee (2009) Photoactivated antimicrobial wound dressing and method relating thereto. United States patent application US 12/034,629

Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 1(59):302–325

Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219

Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130(4):1274–1284

Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14(8):1084

Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573

Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27(10):2281–2285

Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2–3):193–196

Lyne B (2013) Market prospects for nanocellulose. The Royal Institute of Technology, Alberta Biomaterials Development Centre, Edmunton

Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389

Mahadia MB, Rahmana NA, Manafa SF (2015) Isolation of nanocellulose from jatropha waste: an overview. Jurnal Teknologi 76(7):37–41

Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51

Mariño M, Lopes da Silva L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4):5908–5923

Matthysse AG, Deora R, Mishra M, Torres AG (2008) Polysaccharides cellulose, poly-β-1, 6-N-acetyl-d-glucosamine, and colanic acid are required for optimal binding of Escherichia coli O157: h7 strains to alfalfa sprouts and K-12 strains to plastic but not for binding to epithelial cells. Appl Environ Microbiol 74(8):2384–2390

Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J App Microbiol 107(2):576–583

Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol—Bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 86(2):444–452

Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110

Monteiro C, Saxena I, Wang X, Kader A, Bokranz W, Simm R, Nobles D, Chromek M, Brauner A, Brown RM, Römling U (2009) Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol 11(5):1105–1116

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GM (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19(5):1645–1654

Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Proc 2(1):23

Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15(2):323–331

Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80(1):93–97

Naz S, Ahmad N, Akhtar J, Ahmad NM, Ali A, Zia M (2016) Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnol 10(6):395–399

Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57(5):449

Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639

Pal L, Joyce MK, Fleming PD, Cretté SA, Ruffner C (2008) High barrier sustainable co-polymerized coatings. JCT Res 5(4):279–489

Pandey M, Cairul M, Mohd I, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 905471

Park M, Lee D, Hyun J (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 13(116):223–228

Pasquini D, de Morais TE, da Silva Curvelo AA, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32(3):486–490

Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJ (2008) Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. In: Monomers, polymers and composites from renewable resources, pp 369–383

Peters S, Rushing T, Landis E, Cummins T (2010) Nanocellulose and microcellulose fibers for concrete. Transp Res Rec J Transp Res Board 10(2142):25–28

Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277

Phisalaphong M, Suwanmajo T, Tammarate P (2008) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107(5):3419–3424

Podder PK, Gupta A, Jamari SS, Rashid SS, Sharma S, Subramaniam M, Thraisingam J (2016) Isolation of nano cellulose from rubber wood fibre and fibrillation effects on nano cellulose reinforced poly (Ethylene Oxide). In: National conference for postgraduate research (NCON-PGR 2016)

Pommet M, Juntaro J, Heng JY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MS, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromol 9(6):1643–1651

Purkait BS, Ray D, Sengupta S, Kar T, Mohanty A, Misra M (2010) Isolation of cellulose nanoparticles from sesame husk. Ind Eng Chem Res 50(2):871–876

Qua EH, Hornsby PR, Sharma HS, Lyons G, McCall RD (2009) Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4):2238–2247

Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99(6):2491–2511

Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 1(83):746–754

Red C (2012) Composites in aircraft interiors, 2012–2022. In: High performance composites

Reddy N, Yang Y (2005) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46(15):5494–5500

Reiner RS, Rudie AW (2013) 1 Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Production and applications of cellulose nanomaterials, TAPPI Press, Chapter 1.1, pp 21–24, vol 1, pp 21–24

Retrieved from China Economic Net: Engineering plastics sector to see increase of 10.93%. Huiqin W. 2011. http://en.ce.cn/Insight/201202/01/t20120201_23034917.shtml

Retrieved from Flex Form Technologies Vehicle Weight Reduction and Safety Concerns for meeting CAFE Standards. Retrieved from Flex Form Technogies: http://www.naturalfibersforautomotive.com/?p=84 . April 2016

Retrieved from Future Markets Inc: Nanotechnology and Nanomaterials in the Automotive industry 2016 September 9, pp 28–35

Retrieved from SpecialChem: Automobiles Push Renewable Plastic and Composite Use Biron M Feb 11 2013

Retrived from Ford Motor Company, Ford develops carbon fibre technology that could deliver more fuel-efficient vehicles. Press release, 9 April 2016

Rudnick A (2006) Advances in tissue engineering and use of type 1 bovine collagen particles in wound bed preparation. J Wound Care 15(9):402–404

Saldaña Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL, Girón JA (2009) Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 11(4):992–1006

Sanchis MJ, Carsí M, Gómez CM, Culebras M, Gonzales KN, Torres FG (2017) Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition. Carbohydr Polym 10(157):353–360

Sani A, Dahman Y (2010) Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biotechnol 85(2):151–164

Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microbial Technol 52(1):20–25

Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16(5):877–885

Shatkin JA, Wegner TH, Bilek ET, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products-Part 1: applications. TAPPI J 13(5):9–16

Silva NH, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJ, Freire CS (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 15(106):264–269

Simão CD, Reparaz JS, Wagner MR, Graczykowski B, Kreuzer M, Ruiz-Blanco YB, García Y, Malho JM, Goñi AR, Ahopelto J, Torres CM (2015) Optical and mechanical properties of nanofibrillated cellulose: toward a robust platform for next-generation green technologies. Carbohydr Polym 1(126):40–46

Simm R, Remminghorst U, Ahmad I, Zakikhany K, Römling U (2009) A role for the EAL-like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar Typhimurium. J Bacteriol 191(12):3928–3937

Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298

Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

Somerville C (2006) Cellulose synthesis in higher plants. Ann Rev Cell Dev Biol 10(22):53–78

Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122(2):1030–1039

Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nuclear Inst Meth Phys Res Sec B Beam Interact Mater Atoms 265(1):434–438

Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2):1055–1061

Sun D, Zhou L, Wu Q, Yang S (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol-Mater Sci Ed 22(4):677

Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. Amb Express 2(1):61

Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–177

Tischer PC, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromol 11(5):1217–1224

Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19(3):821–829

Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51(4):981–986

Trovatti E, Silva NH, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CS, Silvestre AJ, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromol 12(11):4162–4168

Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435(1):83–87

Ul-Islam M, Ha JH, Khan T, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92(1):360–366

UPM-Kymmene Corporation, pat. WO 2013072550 A3, 2013

Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554

Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux JL, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant cv Valery. Ind Crops Prod 1(83):551–560

Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: synthesis and magnetic studies. J Appl Phys 108(5):053905

Walker C (2012) Thinking small is leading to big changes-nanotechnology is fast becoming a game changer for the pulp and paper industry. Paper360, pp 8–13

Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546

Wang X, Rochon M, Lamprokostopoulou A, Lünsdorf H, Nimtz M, Römling U (2006) Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell Mol Life Sci 63:2352–2363

Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89

Wang Y, Luo Q, Peng B, Pei C (2008) A novel thermotropic liquid crystalline–Benzoylated bacterial cellulose. Carbohydr Polym 74(4):875–879

Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30(1):214–218

Wang H, Zhang X, Jiang Z, Li W, Yu Y (2015) A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Indus Crops Prod 1(71):80–88

Weyerhaeuser Makes Breakthrough in Thermoplastic Composites. Retrieved from: http://www.weyerhaeuser.com/Company/Media/NewsReleases/NewsRelease?dcrId=2012-09-27_WYmakesbreakthroughinthermoplasticcomposites (2012)

Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovas Surg 37(5):592–596

Wong S (2014) An overview of nanotechnology in building materials. Can Young Sci J 2014(2):18–21

Xiao-quan JL (2008) Preparation and characterization of nano-crystalline cellulose from enzymolysis of cotton pulp. Chem Eng Equip 10:002

Yadav V, Sun L, Panilaitis B, Kaplan DL (2015) In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. Tissue Eng Regen Med 9(12):E276–E288

Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025

Yang J, Sun D, Li J, Yang X, Yu J, Hao Q, Liu W, Liu J, Zou Z, Gu J (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54(26):6300–6305

Yaron S, Römling U (2014) Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microbial Biotechnol 7(6):496–516

Yılmaz ND (2015) Biomedical applications: biodegradable polymeric nanocomposites. Adv Biomed Appl 231

Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9(4):6116–6122

Youssef B, Soumia A, Omar C, Abdelaziz L, Mohamed Z (2015) Preparation and properties of bionanocomposite films reinforced with nanocellulose isolated from Moroccan alfa fibres. Autex Res J 15(3):164–172

Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6(7):2540–2547

Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69(3):607–611

Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20(7):1152–1160

Zhang W, Chen S, Hu W, Zhou B, Yang Z, Yin N, Wang H (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohydr Polym 86(4):1760–1767

Zhao Y, Xu C, Xing C, Shi X, Matuana LM, Zhou H, Ma X (2015) Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind Crops Prod 1(65):96–101

Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Mater Lett 65(2):182–184

Zhuo X, Liu C, Pan R, Dong X, Li Y (2017) Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn. ACS Sustain Chem Eng 5(5):4414–4420

Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093

Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49

Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59