Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform
Tóm tắt
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications. However, integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic–inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities. Altogether, the affinity, stability, dispersibility, modification, and functionalization are some of the key merits permitting their synergistic interfacial interactions, which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties. Moreover, the high performance of such hybrids could be achievable through green and straightforward approaches. In this context, the review covered the most advanced nanocellulose-graphene hybrids, focusing on their synthetization, functionalization, fabrication, and multi-sensing applications. These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical, environmental, and human bio-signals detections, mimicking, and in-situ monitoring.
Tài liệu tham khảo
H.C. Kim, S. Mun, H.-U. Ko, L. Zhai, A. Kafy et al., Renewable smart materials. Smart Mater. Struct. 25(7), 073001 (2016). https://doi.org/10.1088/0964-1726/25/7/073001
S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali et al., Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071
Z. Shi, G.O. Phillips, G. Yang, Nanocellulose electroconductive composites. Nanoscale 5(8), 3194–3201 (2013). https://doi.org/10.1039/C3NR00408B
K.-Y. Lee, Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies, 1st edn. (CRC Press, Berlin, 2018), p. 314
J. Kim, S. Yun, Z. Ounaies, Discovery of cellulose as a smart material. Macromolecules 39(12), 4202–4206 (2006). https://doi.org/10.1021/ma060261e
S.-H. Hwang, D. Kang, R.S. Ruoff, H.S. Shin, Y.-B. Park, Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 8(7), 6739–6747 (2014). https://doi.org/10.1021/nn500504s
A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites—a review. Biotechnol. Rep. 21, 00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316
K. Xhanari, K. Syverud, G. Chinga-Carrasco, K. Paso, P. Stenius, Structure of nanofibrillated cellulose layers at the o/w interface. J. Colloid Interface Sci. 356(1), 58–62 (2011). https://doi.org/10.1016/j.jcis.2010.12.083
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79(4), 1086–1093 (2010). https://doi.org/10.1016/j.carbpol.2009.10.045
S.-Y. Zhang, Q. Zhuang, M. Zhang, H. Wang, Z. Gao et al., Poly(ionic liquid) composites. Chem. Soc. Rev. 49(6), 1726–1755 (2020). https://doi.org/10.1039/C8CS00938D
P.P. Brisebois, M. Siaj, Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 8(5), 1517–1547 (2020). https://doi.org/10.1039/C9TC03251G
S.C. Ray, Chapter 2—application and uses of graphene oxide and reduced graphene oxide , in Applications of graphene and graphene-oxide based nanomaterials. ed. by S.C. Ray (William Andrew Publishing, Oxford, 2015), pp. 39–55
E.J.C. Amieva, J. López-Barroso, A.L. Martínez-Hernández, C. Velasco-Santos, Graphene-based materials functionalization with natural polymeric biomolecules, in Recent Avances in Graphene Research. ed. by P.K. Nayak, (IntechOpen, 2016), pp. 257–298
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354(6317), 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020). https://doi.org/10.1016/j.carbon.2019.11.065
K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014). https://doi.org/10.1016/j.progpolymsci.2014.03.001
T. Chen, J. Zhang, P. Shi, Y. Li, L. Zhang et al., Thalia dealbata inspired anisotropic cellular biomass derived carbonaceous aerogel. ACS Sustain. Chem. Engin. 6(12), 17152–17159 (2018). https://doi.org/10.1021/acssuschemeng.8b04528
Y. Li, H. Zhu, F. Shen, J. Wan, S. Lacey et al., Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13, 346–354 (2015). https://doi.org/10.1016/j.nanoen.2015.02.015
H. Qi, Novel Functional Materials Based on Cellulose (Springer, 2017).
C. Verma, E.E. Ebenso, Ionic liquid-mediated functionalization of graphene-based materials for versatile applications: a review. Graphene Technol. 4(1), 1–15 (2019). https://doi.org/10.1007/s41127-018-0023-z
J. Zhang, J. Wu, J. Yu, X. Zhang, J. He et al., Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater. Chem. Front. 1(7), 1273–1290 (2017). https://doi.org/10.1039/C6QM00348F
A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose. Chem. Rev. 109(12), 6712–6728 (2009). https://doi.org/10.1021/cr9001947
L. Feng, Z.-L. Chen, Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142(1), 1–5 (2008). https://doi.org/10.1016/j.molliq.2008.06.007
H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose. Chem. Soc. Rev. 41(4), 1519–1537 (2012). https://doi.org/10.1039/C2CS15311D
R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002). https://doi.org/10.1021/ja025790m
C. Liu, S. Qiu, P. Du, H. Zhao, L. Wang, An ionic liquid–graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications. Nanoscale 10(17), 8115–8124 (2018). https://doi.org/10.1039/C8NR01890A
H. Weingärtner, Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chem. Int. Ed. 47(4), 654–670 (2008). https://doi.org/10.1002/anie.200604951
H. Qi, J. Liu, S. Gao, E. Mäder, Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J. Mater. Chem. A 1(6), 2161–2168 (2013). https://doi.org/10.1039/C2TA00882C
N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen et al., Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J. Mater. Chem. 21(36), 13991–13998 (2011). https://doi.org/10.1039/C1JM12134K
K.K. Sadasivuni, A. Kafy, H.-C. Kim, H.-U. Ko, S. Mun et al., Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth. Met. 206, 154–161 (2015). https://doi.org/10.1016/j.synthmet.2015.05.018
Y. Chen, P. Pötschke, J. Pionteck, B. Voit, H. Qi, Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J. Mater. Chem. A 6(17), 7777–7785 (2018). https://doi.org/10.1039/C8TA00618K
A. Kafy, K.K. Sadasivuni, A. Akther, S.-K. Min, J. Kim, Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Mater. Lett. 159, 20–23 (2015). https://doi.org/10.1016/j.matlet.2015.05.102
A. Kafy, A. Akther, M.I.R. Shishir, H.C. Kim, Y. Yun et al., Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sens. Actuat. A: Phys. 247, 221–226 (2016). https://doi.org/10.1016/j.sna.2016.05.045
S. Xu, W. Yu, X. Yao, Q. Zhang, Q. Fu, Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Composites Sci. Technol. 131, 67–76 (2016). https://doi.org/10.1016/j.compscitech.2016.05.014
K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie et al., Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv. 10(4), 2150–2159 (2020). https://doi.org/10.1039/C9RA08653F
J. Chen, H. Li, L. Zhang, C. Du, T. Fang et al., Direct reduction of graphene oxide/nanofibrillated cellulose composite film and its electrical conductivity research. Sci. Rep. 10(1), 3124 (2020). https://doi.org/10.1038/s41598-020-59918-z
X. Zhang, X. Liu, W. Zheng, J. Zhu, Regenerated cellulose/graphene nanocomposite films prepared in dmac/licl solution. Carbohydr. Polym. 88(1), 26–30 (2012). https://doi.org/10.1016/j.carbpol.2011.11.054
S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: From low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv. Mater. 32(17), 1907176 (2020). https://doi.org/10.1002/adma.201907176
J.J. Richardson, M. Björnmalm, F. Caruso, Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233), aaa2491 (2015). https://doi.org/10.1126/science.aaa2491
H.-M. Ng, L.T. Sin, T.-T. Tee, S.-T. Bee, D. Hui et al., Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. B: Eng. 75, 176–200 (2015). https://doi.org/10.1016/j.compositesb.2015.01.008
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
J. George, S.N. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015). https://doi.org/10.2147/NSA.S64386
D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin et al., Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020). https://doi.org/10.3389/fchem.2020.00392
P. Tayeb, A.H. Tayeb, Nanocellulose applications in sustainable electrochemical and piezoelectric systems: a review. Carbohydr. Polym. 224, 115149 (2019). https://doi.org/10.1016/j.carbpol.2019.115149
M. Börjesson, G. Westman, Cellulose-fundamental aspects and current trends, in Crystalline Nanocellulose—Preparation, Modification, and Properties. ed. by M. Poletto, H.L.O. Junior, (IntechOpen, 2015), pp. 159–191
M. Mariano, N. El Kissi, A. Dufresne, Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J. Polym. Sci. B: Polym. Phys. 52(12), 791–806 (2014). https://doi.org/10.1002/polb.23490
S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto et al., Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8(24), 15607–15614 (2016). https://doi.org/10.1021/acsami.6b03597
B. Poyraz, A. Tozluoğlu, Z. Candan, A. Demir, Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J. Polym. Eng. 37(9), 921–931 (2017). https://doi.org/10.1515/polyeng-2017-0022
X. Zeng, L. Deng, Y. Yao, R. Sun, J. Xu et al., Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J. Mater. Chem. C 4(25), 6037–6044 (2016). https://doi.org/10.1039/C6TC01501H
S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona et al., Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1), 1–33 (2010). https://doi.org/10.1007/s10853-009-3874-0
F. Hu, N. Lin, P.R. Chang, J. Huang, Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr. Polym. 129, 208–215 (2015). https://doi.org/10.1016/j.carbpol.2015.04.061
K. Benaissi, L. Johnson, D.A. Walsh, W. Thielemans, Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chem. 12(2), 220–222 (2010). https://doi.org/10.1039/B913218J
X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong et al., Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ. Sci. Nano 1(1), 71–79 (2014). https://doi.org/10.1039/C3EN00066D
M. Minelli, M.G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström et al., Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J. Membr. Sci. 358(1), 67–75 (2010). https://doi.org/10.1016/j.memsci.2010.04.030
L.H. Nguyen, S. Naficy, R. Chandrawati, F. Dehghani, Nanocellulose for sensing applications. Adv. Mater. Interfaces 6(18), 1900424 (2019). https://doi.org/10.1002/admi.201900424
J.-H. Kim, S. Mun, H.-U. Ko, G.-Y. Yun, J. Kim, Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25(9), 092001 (2014). https://doi.org/10.1088/0957-4484/25/9/092001
N.R. Savadekar, S.T. Mhaske, Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr. Polym. 89(1), 146–151 (2012). https://doi.org/10.1016/j.carbpol.2012.02.063
H.A. Silvério, W.P. FlauzinoNeto, N.O. Dantas, D. Pasquini, Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crops Prod. 44, 427–436 (2013). https://doi.org/10.1016/j.indcrop.2012.10.014
D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005). https://doi.org/10.1002/anie.200460587
M.M. de Souza Lima, R. Borsali, Rodlike cellulose microcrystals: Structure, properties, and applications. Macromol. Rapid Commun. 25(7), 771–787 (2004). https://doi.org/10.1002/marc.200300268
M. Roman, D.G. Gray, Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 21(12), 5555–5561 (2005). https://doi.org/10.1021/la046797f
M. Giese, L.K. Blusch, M.K. Khan, M.J. MacLachlan, Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54(10), 2888–2910 (2015). https://doi.org/10.1002/anie.201407141
H. Pan, C. Zhu, T. Lu, J. Lin, J. Ma et al., A chiral smectic structure assembled from nanosheets and nanorods. Chem. Commun. 53(11), 1868–1871 (2017). https://doi.org/10.1039/C6CC08337D
J.P.F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park et al., Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6(1), e80 (2014). https://doi.org/10.1038/am.2013.69
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530 (2009). https://doi.org/10.1126/science.1158877
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
A. Kumar, K. Sharma, A.R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54(8), 5992–6026 (2019). https://doi.org/10.1007/s10853-018-03244-3
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
R.S. Edwards, K.S. Coleman, Graphene synthesis: Relationship to applications. Nanoscale 5(1), 38–51 (2013). https://doi.org/10.1039/C2NR32629A
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Devices 5(1), 10–29 (2020). https://doi.org/10.1016/j.jsamd.2020.01.006
S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen et al., Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
Y.L. Zhong, Z. Tian, G.P. Simon, D. Li, Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18(2), 73–78 (2015). https://doi.org/10.1016/j.mattod.2014.08.019
V.B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B: Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013
J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005). https://doi.org/10.1038/nature04235
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth et al., The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545
A.T. Lawal, Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 141, 111384 (2019). https://doi.org/10.1016/j.bios.2019.111384
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008). https://doi.org/10.1126/science.1157996
J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACS Nano 4(11), 6557–6564 (2010). https://doi.org/10.1021/nn101781v
C. Gómez-Navarro, M. Burghard, K. Kern, Elastic properties of chemically derived single graphene sheets. Nano Lett. 8(7), 2045–2049 (2008). https://doi.org/10.1021/nl801384y
H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010). https://doi.org/10.1021/ma100572e
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458
L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai et al., Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22(12), 5676–5683 (2012). https://doi.org/10.1039/C2JM15944A
Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24(23), 3134–3137 (2012). https://doi.org/10.1002/adma.201200827
G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008). https://doi.org/10.1038/nnano.2008.83
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee et al., High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306), 1413 (2016). https://doi.org/10.1126/science.aah3398
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney et al., Graphene-based composite materials. Nature 442(7100), 282–286 (2006). https://doi.org/10.1038/nature04969
J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
N. Song, D. Jiao, P. Ding, S. Cui, S. Tang et al., Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 4(2), 305–314 (2016). https://doi.org/10.1039/C5TC02194D
N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 9(3), 2924–2932 (2017). https://doi.org/10.1021/acsami.6b11979
N. Song, S. Cui, D. Jiao, X. Hou, P. Ding et al., Layered nanofibrillated cellulose hybrid films as flexible lateral heat spreaders: the effect of graphene defect. Carbon 115, 338–346 (2017). https://doi.org/10.1016/j.carbon.2017.01.017
P. Johari, V.B. Shenoy, Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9), 7640–7647 (2011). https://doi.org/10.1021/nn202732t
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth et al., Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
A.V. Naumov, Optical Properties of Graphene Oxide (Wiley, 2016), pp. 147–174
K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010). https://doi.org/10.1038/nchem.907
P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula et al., Nanocellulose: extraction and application. Carbon Resour. Convers. 1(1), 32–43 (2018). https://doi.org/10.1016/j.crcon.2018.05.004
J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull et al., Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132(23), 8180–8186 (2010). https://doi.org/10.1021/ja102777p
M. Nasrollahzadeh, F. Babaei, P. Fakhri, B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Adv. 5(14), 10782–10789 (2015). https://doi.org/10.1039/C4RA12552E
L. Tang, X. Li, D. Du, C. He, Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Progress Nat. Sci.: Mater. Int. 22(4), 341–346 (2012). https://doi.org/10.1016/j.pnsc.2012.06.005
R. Xiong, K. Hu, A.M. Grant, R. Ma, W. Xu et al., Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 28(7), 1501–1509 (2016). https://doi.org/10.1002/adma.201504438
R. Rahman, J.T. Foster, A. Haque, Molecular dynamics simulation and characterization of graphene–cellulose nanocomposites. J. Phys. Chem. A 117(25), 5344–5353 (2013). https://doi.org/10.1021/jp402814t
S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: Constructing high performance graphene-based nanocomposites. Mater. Today 20(4), 210–219 (2017). https://doi.org/10.1016/j.mattod.2016.11.002
K. De France, Z. Zeng, T. Wu, G. Nyström, Functional materials from nanocellulose: utilizing structure–property relationships in bottom-up fabrication. Adv. Mater. (2020). https://doi.org/10.1002/adma.202000657
W. Ouyang, J. Sun, J. Memon, C. Wang, J. Geng et al., Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62, 501–509 (2013). https://doi.org/10.1016/j.carbon.2013.06.049
U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089
W. Ye, X. Li, H. Zhu, X. Wang, S. Wang et al., Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties. Chem. Eng. J. 299, 45–55 (2016). https://doi.org/10.1016/j.cej.2016.04.030
J. Yang, X. Li, S. Han, R. Yang, P. Min et al., High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6(14), 5880–5886 (2018). https://doi.org/10.1039/C8TA00078F
C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28(34), 12463–12471 (2012). https://doi.org/10.1021/la302077a
M. Yadav, K.Y. Rhee, I.H. Jung, S.J. Park, Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2), 687–698 (2013). https://doi.org/10.1007/s10570-012-9855-5
A. Hajian, S.B. Lindström, T. Pettersson, M.M. Hamedi, L. Wågberg, Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 17(3), 1439–1447 (2017). https://doi.org/10.1021/acs.nanolett.6b04405
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
L. Johnson, W. Thielemans, D.A. Walsh, Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent. Green Chem. 13(7), 1686–1693 (2011). https://doi.org/10.1039/C0GC00881H
Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du et al., Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1(5), 917–922 (2011). https://doi.org/10.1002/aenm.201100312
H. Peng, L. Meng, L. Niu, Q. Lu, Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J. Phys. Chem. C 116(30), 16294–16299 (2012). https://doi.org/10.1021/jp3043889
S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang et al., Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8(4), 325–327 (2006). https://doi.org/10.1039/B601395C
J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He et al., Nmr spectroscopic studies of cellobiose solvation in emimac aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys. Chem. Chem. Phys. 12(8), 1941–1947 (2010). https://doi.org/10.1039/B920446F
S.A. Kislenko, I.S. Samoylov, R.H. Amirov, Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [bmim][pf6]. Phys. Chem. Chem. Phys. 11(27), 5584–5590 (2009). https://doi.org/10.1039/B823189C
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang et al., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008). https://doi.org/10.1002/adfm.200700797
S. Ravula, S.N. Baker, G. Kamath, G.A. Baker, Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale 7(10), 4338–4353 (2015). https://doi.org/10.1039/C4NR01524J
B. Zhang, W. Ning, J. Zhang, X. Qiao, J. Zhang et al., Stable dispersions of reduced graphene oxide in ionic liquids. J. Mater. Chem. 20(26), 5401–5403 (2010). https://doi.org/10.1039/C0JM01029D
C. Wang, Y. Chen, K. Zhuo, J. Wang, Simultaneous reduction and surface functionalization of graphene oxide via an ionic liquid for electrochemical sensors. Chem. Commun. 49(32), 3336–3338 (2013). https://doi.org/10.1039/C3CC40507A
C. Xu, Highly sensitive ascorbic acid sensor based on ionic liquid functionalized graphene oxide nanocomposite. Int. J. Electrochem. Sci. 14, 1670–1683 (2019). https://doi.org/10.20964/2019.02.18
Q. Ji, I. Honma, S.-M. Paek, M. Akada, J.P. Hill, A. Vinu et al., Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 49(50), 9737–9739 (2010). https://doi.org/10.1002/anie.201004929
W. Fu, Y. Dai, X. Meng, W. Xu, J. Zhou et al., Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology 30(4), 045602 (2018). https://doi.org/10.1088/1361-6528/aaed99
H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). https://doi.org/10.1002/adfm.200900167
V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). https://doi.org/10.1038/nnano.2008.329
L. Valentini, M. Cardinali, E. Fortunati, L. Torre, J.M. Kenny, A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 105, 4–7 (2013). https://doi.org/10.1016/j.matlet.2013.04.034
H. Jing, Z. Liu, H.-Y. Li, G.-H. Wang, J.-W. Pu, Solubility of wood-cellulose in licl/dmac solvent system. For. Stud. China 9(3), 217–220 (2007). https://doi.org/10.1007/s11632-007-0035-x
C.L. McCormick, P.A. Callais, B.H. Hutchinson, Solution studies of cellulose in lithium chloride and n,n-dimethylacetamide. Macromolecules 18(12), 2394–2401 (1985). https://doi.org/10.1021/ma00154a010
T. Zhang, X. Zhang, Y. Chen, Y. Duan, J. Zhang, Green fabrication of regenerated cellulose/graphene films with simultaneous improvement of strength and toughness by tailoring the nanofiber diameter. ACS Sustain. Chem. Engin. 6(1), 1271–1278 (2018). https://doi.org/10.1021/acssuschemeng.7b03608
M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández et al., Vitamin c is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). https://doi.org/10.1021/jp100603h
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang et al., Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). https://doi.org/10.1039/B917705A
Z. Khosroshahi, M. Kharaziha, F. Karimzadeh, A. Allafchian, Green reduction of graphene oxide by ascorbic acid. AIP Conf. Proc. 1920(1), 020009 (2018). https://doi.org/10.1063/1.5018941
K.K.H. De Silva, H.-H. Huang, M. Yoshimura, Progress of reduction of graphene oxide by ascorbic acid. Appl. Surface Sci. 447, 338–346 (2018). https://doi.org/10.1016/j.apsusc.2018.03.243
N. Shah, M. Ul-Islam, W.A. Khattak, J.K. Park, Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98(2), 1585–1598 (2013). https://doi.org/10.1016/j.carbpol.2013.08.018
Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87(1), 644–649 (2012). https://doi.org/10.1016/j.carbpol.2011.08.039
P.T. Hammond, Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly. AIChE J. 57(11), 2928–2940 (2011). https://doi.org/10.1002/aic.12769
D. Yang, Z. Lu, X. Qi, D. Yan, Q. Gao et al., Fabrication of a uniaxial cellulose nanocrystal thin film for coassembly of single-walled carbon nanotubes. RSC Adv. 6(45), 39396–39400 (2016). https://doi.org/10.1039/C6RA06574K
Z. Lu, X. Qi, Z. Zhang, D. Yang, Q. Gao et al., Design of heterogeneous nuclei for lateral crystallization via uniaxial assembly of cellulose nanocrystals. Cryst. Growth Des. 16(8), 4620–4626 (2016). https://doi.org/10.1021/acs.cgd.6b00707
K.K. Sadasivuni, A. Kafy, L. Zhai, H.-U. Ko, S. Mun et al., Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8), 994–1002 (2015). https://doi.org/10.1002/smll.201402109
R. Vendamme, S.-Y. Onoue, A. Nakao, T. Kunitake, Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat. Mater. 5(6), 494–501 (2006). https://doi.org/10.1038/nmat1655
P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim et al., Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847), 80 (2007). https://doi.org/10.1126/science.1143176
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012). https://doi.org/10.1039/C1CS15078B
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
K.M.F. Shahil, A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r
P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.-H. Kim et al., Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101, 120–128 (2016). https://doi.org/10.1016/j.carbon.2016.01.088
M. Hou, M. Xu, B. Li, Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustain. Chem. Engin. 6(3), 2983–2990 (2018). https://doi.org/10.1021/acssuschemeng.7b02683
Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen et al., Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim. Acta 55(12), 3897–3903 (2010). https://doi.org/10.1016/j.electacta.2010.01.089
S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Engin. 2014, 578168 (2014). https://doi.org/10.1155/2014/578168
K.K. Sadasivuni, D. Ponnamma, B. Kumar, M. Strankowski, R. Cardinaels et al., Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos. Sci. Technol. 104, 18–25 (2014). https://doi.org/10.1016/j.compscitech.2014.08.025
J. Zhang, J. Rastegar, Micro/macro or link-integrated micro-actuator manipulation—a kinematics and dynamics perspective. J. Mechan. Design. 129(10), 1086–1093 (2006). https://doi.org/10.1115/1.2757193
R.C. Luo, Sensor technologies and microsensor issues for mechatronics systems. IEEE/ASME Trans. Mechatron. 1(1), 39–49 (1996). https://doi.org/10.1109/3516.491408
C. Zhenhai, R.C. Luo, Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. IEEE Trans. Ind. Electron. 45(6), 886–894 (1998). https://doi.org/10.1109/41.735332
P.-H. Lo, S.-H. Tseng, J.-H. Yeh, W. Fang, Development of a proximity sensor with vertically monolithic integrated inductive and capacitive sensing units. J. Micromech. Microeng. 23(3), 035013 (2013). https://doi.org/10.1088/0960-1317/23/3/035013
A. Kafy, K.K. Sadasivuni, S. Mun, J. Kim, A Tactile Sensor Made of Graphene-Cellulose Nanocomposite (SPIE, 2015), p. SS
H. Xu, Y.F. Lu, J.X. Xiang, M.K. Zhang, Y.J. Zhao et al., A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018). https://doi.org/10.1039/C7NR07225B
M. Tavakolian, S.M. Jafari, T.G.M. van de Ven, A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12(1), 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
L.J. Gibson, The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9(76), 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341
H.V. Lee, S.B.A. Hamid, S.K. Zain, Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 631013 (2014). https://doi.org/10.1155/2014/631013
S. Besombes, K. Mazeau, The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl β-o-4 dimer onto a iβ cellulose whisker. Plant Physiol. Biochem. 43(3), 299–308 (2005). https://doi.org/10.1016/j.plaphy.2005.02.005
H. Zhang, J. Wu, J. Zhang, J. He, 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20), 8272–8277 (2005). https://doi.org/10.1021/ma0505676