Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration

EPJ Quantum Technology - Tập 5 - Trang 1-30 - 2018
Erik Kerstel1,2, Arnaud Gardelein3, Mathieu Barthelemy1,4, Matthias Fink5, Siddarth Koduru Joshi5, Rupert Ursin5,6
1CNRS, LIPhy, Univ. Grenoble Alpes, Grenoble, France
2Centre Spatial Universitaire de Grenoble, Grenoble, France
3Air Liquide Advanced Technologies, Grenoble, France
4IPAG, Univ. Grenoble Alpes, Grenoble, France
5Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
6Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria

Tóm tắt

We present a ground-to-space quantum key distribution (QKD) mission concept and the accompanying feasibility study for the development of the associated low earth orbit nanosatellite payload. The quantum information is carried by single photons with the binary codes represented by polarization states of the photons. Distribution of entangled photons between the ground and the satellite can be used to certify the quantum nature of the link: a guarantee that no eavesdropping can take place. By placing the entangled photon source on the ground, the space segments contains “only” the less complex detection system, enabling its implementation in a compact enclosure, compatible with the 12U CubeSat standard ( ${\sim}12~\mbox{dm}^{3}$ ). This reduces the overall cost of the project, making it an ideal choice as a pathfinder for future European quantum communication satellite missions. The space segment is also more versatile than one that contains the source since it is compatible with a multiple of QKD protocols (not restricted to entangled photon schemes) and can be used in quantum physics experiments, such as the investigation of entanglement decoherence. Other possible experiments include atmospheric transmission/turbulence characterization, dark area mapping, fine pointing and tracking, and accurate clock synchronization; all crucial for future global scale quantum communication efforts.

Tài liệu tham khảo

Wootters WK, Zurek WH. A single quantum cannot be cloned. Nature. 1982;299(5886):802–3. https://doi.org/10.1038/299802a0. Aleksic S, Winkler D, Franzl G, Poppe A, Schrenk B, Hipp F. Quantum key distribution over optical access networks. In: Proc. 18th European conference on network and optical communications & 8th conference on optical cabling and infrastructure (NOC-OC & I). 2013. p. 11–8. https://doi.org/10.1109/NOC-OCI.2013.6582861. Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys. 2011;83(1):33–80. https://doi.org/10.1103/RevModPhys.83.33. Joshi SK, Pienaar J, Ralph TC, Cacciapuoti L, McCutcheon W, Rarity J, …, Ursin R. Space QUEST mission proposal: experimentally testing decoherence due to gravity. New J Phys. 2018;20:063016. https://doi.org/10.1088/1367-2630/aac58b. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci. 2014;560(P1):7–11. https://doi.org/10.1016/j.tcs.2014.05.025. (This is a re-issue of the paper that appeared originally on pages 175–179 of the Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, December 1984.) Ekert A. Quantum cryptography based on Bell’s theorem. Phys Rev Lett. 1991;67(6):661. Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys. 2002;74(1):145. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key distribution. Rev Mod Phys. 2009;81(3):1301–50. https://doi.org/10.1103/RevModPhys.81.1301. Durt T, Englert BG, Bengtsson I, Życzkowski K. On mutually unbiased bases. Int J Quantum Inf. 2010;8(4):535–640. https://doi.org/10.1142/S0219749910006502. Hevner R, Holemans W, Pui-Suari J, Twiggs R. An advanced standard for CubeSats. In: 25th annual AIAA/USU conference on small satellites (abstr. SSC11-II-3). 2011. Dror I, Sandrov A, Kopeika NS. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect. Appl Opt. 1998;37:6495–9. Hughes RJ, Nordholt JE, Derkacs D, Peterson G. Practical free-space quantum key distribution over 10 km in daylight andat night. New J Phys. 2002;4:43. Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Oemer B, Fuerst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H, Zeilinger A. Entanglement-based quantum communication over 144 km. Nat Phys. 2007;3:481–6. Yin J, Cao Y, Li YH, Liao SK, Zhang L, Ren JG, Pan JW. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356(6343):1140–4. https://doi.org/10.1126/science.aan3211. Liao SK, Cai WQ, Liu WY, Zhang L, Li Y, Ren JG, …, Pan JW. Satellite-to-ground quantum key distribution. Nature. 2017;549(7670):43–47. https://doi.org/10.1038/nature23655. Liao S-K, Cai W-Q, Handsteiner J, Liu B, Yin J, Zhang L, et al.. Satellite-relayed intercontinental quantum network. Phys Rev Lett. 2018;120(3):030501. https://doi.org/10.1103/PhysRevLett.120.030501. Takenaka H, Carrasco-Casado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat Photonics. 2017;11:502–8. https://doi.org/10.1038/nphoton.2017.107. Tang Z, Chandrasekara R, Tan YC, Cheng C, Sha L, Hiang GC, Oi DKL, Ling A. Generation and analysis of correlated pairs of photons aboard a nanosatellite. Phys Rev Appl. 2016;5(5):054022. https://doi.org/10.1103/PhysRevApplied.5.054022. Bedington R, Arrazola JM, Ling A. Progress in satellite quantum key distribution. npj Quantum Inf. 2017;3(30):1–13. https://doi.org/10.1038/s41534-017-0031-5. European cooperation for space standardization: space project management. Normative document ECSS-M-ST-10C Rev 1. 6 March 2009. Ursin R, Jennewein T, Kofler J, Perdigues JM, Cacciapuoti L, de Matos CJ, Zeilinger A. Space-QUEST: experiments with quantum entanglement in space. Europhys News. 2009;40(3):26–9. https://doi.org/10.1051/epn/2009503. Scarani V, Acín A, Ribordy G, Gisin N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys Rev Lett. 2004;92(5):057901. https://doi.org/10.1103/PhysRevLett.92.057901. Ng NHY, Joshi SK, Chia CM, Kurtsiefer C, Wehner S. Experimental implementation of bit commitment in the noisy-storage model. Nat Commun. 2012;3:1326. https://doi.org/10.1038/ncomms2268. French space law: Loi no 2008-518 du 3 juin 2008 relative aux opérations spatiales. https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000018931380. Accessed 5 Nov 2017. Small satellite launch services. https://www.isispace.nl/launch-services/. Accessed 2 Nov 2017. Ho C, Lamas-Linares A, Kurtsiefer C. Clock synchronization by remote detection of correlated photon pairs. New J Phys. 2009;11(4):045011. https://doi.org/10.1088/1367-2630/11/4/045011. Technology readiness level. http://sci.esa.int/sci-ft/50124-technology-readiness-level/. Accessed 17 Oct 2017. Andreev VM, Emelyanov VM, Chesta OI, Lantratov VM, Shvarts MZ, Timoshina NK. Radiation degradation of multijunction III-V solar cells and prediction of their lifetime. In: 27th European photovoltaic solar energy conference and exhibition. 2012. p. 169–74. Fink M, Steinlechner F, Scheidl T, Ursin R. QUBESAT: A CubeSat mission for fundamental physics quantum optics experiments in space. Final report prepared for ESA. 2015. Rarity JG, Owens PCM, Tapster PR. Quantum random-number generation and key sharing. J Mod Opt. 1994;41(12):2435–44. https://doi.org/10.1080/09500349414552281. Kurtsiefer C, Zarda P, Mayer S, Weinfurter H. The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? J Mod Opt. 2001;48(13):2039–47. Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A. A fast and compact quantum random number generator. Rev Sci Instrum. 2000;71(4):1675–80. https://doi.org/10.1063/1.1150518. Stefanov A, Gisin N, Guinnard O, Guinnard L, Zbinden H. Optical quantum random number generator. J Mod Opt. 2000;47(4):595–8. https://doi.org/10.1080/09500340008233380. Hildebrand E. Ph.D. thesis. Johann Wolfgang Goethe Universitat, Frankfurt am Main; 2001. Bonato C, Aspelmeyer M, Jennewein T, Pernechele C, Villoresi P, Zeilinger A. Influence of satellite motion on polarization qubits in a Space–Earth quantum communication link. Opt Express. 2006;14(21):010050. https://doi.org/10.1364/OE.14.010050. Rarity JG, Tapster PR, Gorman PM, Knight P. Ground to satellite secure key exchange using quantum cryptography. New J Phys. 2002;4:82. https://doi.org/10.1088/1367-2630/4/1/382. Gravrand O, Rothman J, Cervera C, Baier N, Lobre C, Zanatta JP, Fieque B. HgCdTe detectors for space and science imaging: general issues and latest achievements. J Electron Mater. 2016;45(9):4532–41. https://doi.org/10.1007/s11664-016-4516-3. Rothman J, De Broniol E, Foubert K, Mollard L, Péré-Laperne N. HgCdTe APDS for time resolved space applications. In: International conference on space optics (ICSO). 2016. p. 279. Moscatelli F, Marisaldi M, Rubini D. Radiation tests of single photon avalanche diode for space applications. Nucl Instrum Methods Phys Res, Sect A, Accel Spectrom Detect Assoc Equip. 2013;711:65–72. https://doi.org/10.1016/j.nima.2013.01.056. Tan YC, Chandrasekara R, Cheng C, Ling A. Radiation tolerance of opto-electronic components proposed for space-based quantum key distribution. J Mod Opt. 2015;62:1709–12. https://doi.org/10.1080/09500340.2015.1046519. Anisimova E, Higgins BL, Bourgoin JP, Cranmer M, Choi E, Hudson D, Jennewein T. Mitigating radiation damage of single photon detectors for space applications. EPJ Quantum Technol. 2017;4(1):10. Gulinatti A, Rech I, Panzeri F, Cammi C, Maccagnani P, Ghioni M, Cova S. New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration. J Mod Opt. 2012;59(17):1489–99. https://doi.org/10.1080/09500340.2012.701340. The OMERE software. http://www.trad.fr/en/space/omere-sotftware/. Accessed 3 Nov 2017. Kodet J, Prochazka I, Blazej J, Sun X, Cavanaugh J. Single photon avalanche diode radiation tests. Nucl Instrum Methods Phys Res, Sect A, Accel Spectrom Detect Assoc Equip. 2012;695:309–12. https://doi.org/10.1016/j.nima.2011.11.001. Systema—Thermica plug-in. http://www.systema.airbusdefenceandspace.com/products/thermica.html. Accessed 5 Nov 2017. Neumann SP, Joshi SK, Fink M, Scharlemann C, Abouagaga S, Bambery D, Kerstel E, Barthelemey M, Ursin R. Quantum communications uplink to a 3U CubeSat: feasibility & design. Eur Phys J. 2018;5:4. https://doi.org/10.1140/epjqt/s40507-018-0068-1. Wenzel Associates space oscillators. http://www.wenzel.com/product/space/space-oscillators/#hf-space-ocxo. Accessed 3 Nov 2017. Chip scale atomic clock. https://www.microsemi.com/product-directory/clocks-frequency-references/3824-chip-scale-atomic-clock-csac. Accessed 3 Nov 2017. El-Hadbi A, Cherkaoui A, Elissati O, Simatic J, Fesquet L. On-the-fly and sub-gate-delay resolution TDC based on self-timed rings: a proof of concept. In: 15th IEEE international new circuits and systems conference (NEWCAS). 2017. p. 305–8. https://doi.org/10.1109/NEWCAS.2017.8010166. Blue Canyon Technologies XACT-50. http://bluecanyontech.com/xact-50/. Accessed 5 Nov 2017. Mason JP, Baumgart M, Rogler B, Downs C, Williams M, Woods TN, et al.. MinXSS-1 CubeSat on-orbit pointing and power performance: the first flight of the Blue Canyon technologies XACT 3-axis attitude determination and control system. J Small Satell. 2017;6(3):651–62. RAVAN (radiometer assessment using vertically aligned nanotubes) pathfinder mission. https://directory.eoportal.org/web/eoportal/satellite-missions/r/ravan. Accessed 5 Nov 2017. Personal communication with Steve Stem, systems engineer, Blue Canyon Technologies. Jan 3, 2017. Hauschild A, Markgraf M, Montenbruck O. GPS receiver performance on board a LEO satellite. Inside GNSS. 2014;9(4):47–57. http://www.insidegnss.com/node/4093. Accessed 17 Oct 2017. Montenbruck O, Swatschina P, Markgraf M, Santandrea S, Naudet J, Tilmans E. Precision spacecraft navigation using a low-cost GPS receiver. GPS Solut. 2012;16:519–29. https://doi.org/10.1007/s10291-011-0252-6. Perlot N, Knapek M, Giggenbach D, Horwath J, Brechtelsbauer M, Takayama Y, Jono T. Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station Oberpfaffenhofen (OGS-OP). In: Mecherle S, Korotkova O, editors. Lasers and applications in science and engineering. vol. 6457. 2017. 645704. https://doi.org/10.1117/12.708413. Arnon S, Barry J, Karagiannidis G, Schober R, Uysal M, editors. Advanced optical wireless communication systems. Cambridge: Cambridge University Press; 2012. Schmidt C, Brechtelsbauer M, Rein F, Fuchs C. OSIRIS payload for DLR’s BiROS satellite. In: International conference on space optical systems and applications. ICSOS. 7–9 May, Kobe, Japan. 2014. https://directory.eoportal.org/web/eoportal/satellite-missions/b/biros. Accessed 17 Oct 2017. CubeSat to demonstrate miniature laser communications in orbit. https://www.nasa.gov/press-release/CubeSat-to-demonstrate-miniature-laser-communications-in-orbit. Accessed 5 Nov 2017. Clements E, Aniceto R, Barnes D, Caplan D, Clark J, Del Portillo I, Cahoy K. Nanosatellite optical downlink experiment: design, simulation, and prototyping. Opt Eng. 2016;55(11):111610. https://doi.org/10.1117/1.OE.55.11.111610. Carrasco-Casado A, Denisenko N, Fernandez V. Chromatic effects in beam wander correction for free-space quantum communications. Microw Opt Technol Lett. 2016;58(6):1362–5. https://doi.org/10.1002/mop.29802. Fischer E, Berkefeld T, Feriencik M, Feriencik M, Kaltenback V, Soltau D, Sodnik Z. Use of adaptive optics in ground stations for high data rate satellite-to-ground links. In: Proc. of SPIE: ICSO 2016, Biarritz. vol. bseriesno10562. 2016. 105623L-2. https://doi.org/10.1117/12.2296200. Andrews LC, Philips RL. Laser beam propagation through random media. 2nd ed. Bellingham: SPIE; 2005. Pfennigbauer M, Aspelmeyer M, Leeb WR, Baister G, Dreischer T, Jennewein T, Zeilinger A. Satellite-based quantum communication terminal employing state-of-the-art technology. J Opt Netw. 2005;4(9):549–60. https://doi.org/10.1364/JON.4.000549. Fried DL. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J Opt Soc Am. 1966;56(10):1372–9. https://doi.org/10.1364/JOSA.56.001372. Hardy JW. Adaptive optics for astronomical telescopes. London: Oxford University Press; 1998. p. 92. ISBN:0-19-509019-5. Ma X, Fung CH, Lo HK. Quantum key distribution with entangled photon sources. Phys Rev A. 2007;76(1):012307. https://doi.org/10.1103/PhysRevA.76.012307. Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett. 2000;85(2):441–4. https://doi.org/10.1103/PhysRevLett.85.441. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM. 1978;21(2):120–6. https://doi.org/10.1145/359340.359342. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser S, editor. Proceedings of the 35th symposium on foundations of computer science. Washington: IEEE Computer Society; 1994. p. 124–34. Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. 1996. arXiv:quant-ph/9508027v2 [quant-ph]. Accessed 17 Oct 2017. Erkmen B, Shapiro J, Schwab K. In: Quantum communication, sensing and measurement in space. Pasadena, California. 2012. Retrieved from http://kiss.caltech.edu/study/quantum/report.pdf. Accessed 17 Oct 2017. van Raamsdonk M. Building up spacetime with quantum entanglement. Gen Relativ Gravit. 2010;42(10):2323–9. https://doi.org/10.1007/s10714-010-1034-0. van Raamsdonk M. Lectures on gravity and entanglement. 2016. arXiv:1609.00026 [hep-th]. Ralph TC, Pienaar J. Entanglement decoherence in a gravitational well according to the event formalism. New J Phys. 2014;16:085008. https://doi.org/10.1088/1367-2630/16/8/085008. Lim JG, Anisimova E, Higgins BL, Bourgoin JP, Jennewein T, Makarov V. Laser annealing heals radiation damage in avalanche photodiodes. EPJ Quantum Technol. 2017;4:11. https://doi.org/10.1140/epjqt/s40507-017-0064-x.