Nanobiotechnological advancements in lignocellulosic biomass pretreatment
Tài liệu tham khảo
Sanchez, 2008, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol., 99, 5270, 10.1016/j.biortech.2007.11.013
Mauser, 2015, Global biomass production potentials exceed expected future demand without the need for cropland expansion, Nat. Commun., 6, 8946, 10.1038/ncomms9946
Chen, 1997, Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass, Appl. Biochem. Biotechnol., 63, 435, 10.1007/BF02920444
Melzoch, 1997, Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate, J. Biotechnol., 56, 25, 10.1016/S0168-1656(97)00074-6
Linko, 1984, Applications of immobilized lactic acid bacteria a, Ann. N. Y. Acad. Sci., 434, 406, 10.1111/j.1749-6632.1984.tb29862.x
John, 2007, Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Appl. Microbiol. Biotechnol., 74, 524, 10.1007/s00253-006-0779-6
McCaskey, 1994, Bioconversion of municipal solid waste to lactic acid by Lactobacillus species, Appl. Biochem. Biotechnol., 45, 555, 10.1007/BF02941830
Sun, 2002, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 83, 1, 10.1016/S0960-8524(01)00212-7
Kuhad, 2007
Kirk, 1987, Enzymatic“ combustion”: the microbial degradation of lignin, Annu. Rev. Microbiol., 41, 465, 10.1146/annurev.mi.41.100187.002341
Mosier, 2005, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol., 96, 673, 10.1016/j.biortech.2004.06.025
Himmel, 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, 315, 804, 10.1126/science.1137016
Kumar, 2009, Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies, Biotechnol. Prog., 25, 302, 10.1002/btpr.102
Valdivia, 2016, Biofuels 2020: Biorefineries based on lignocellulosic materials, Microb. Biotechnol., 9, 585, 10.1111/1751-7915.12387
Scarlat, 2015, The role of biomass and bioenergy in a future bioeconomy: policies and facts, Environ. Dev., 15, 3, 10.1016/j.envdev.2015.03.006
Kumar, 2017, Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review, Bioresour. Bioprocess., 4, 7, 10.1186/s40643-017-0137-9
Rai, 2019, Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production, Catal. Rev., 61, 1, 10.1080/01614940.2018.1479503
Rai, 2016, Strategic role of nanotechnology for production of bioethanol and biodiesel, Nanotechnol. Rev., 5, 231, 10.1515/ntrev-2015-0069
Rai, 2017, Role of nanoparticles in enzymatic hydrolysis of lignocellulose in ethanol, 153
Peña, 2012, Acid-functionalized nanoparticles for pretreatment of wheat straw, Journal of Biomaterials and Nanobiotechnology, 3, 342, 10.4236/jbnb.2012.33032
Zhang, 2015, Increase in stability of cellulase immobilized on functionalized magnetic nanospheres, J. Magn. Magn. Mater., 375, 117, 10.1016/j.jmmm.2014.09.067
Peña, 2014, Synthesis of propyl-sulfonic acid-functionalized nanoparticles as catalysts for cellobiose hydrolysis, J. Biomater. Nanobiotechnol., 5, 241, 10.4236/jbnb.2014.54028
Jia, 2017, Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion, Molecules, 22, 269, 10.3390/molecules22020269
Verma, 2017, Enzymatic nanobiosensors in the agricultural and food industry, 229, 10.1007/978-3-319-53112-0_7
Verma, 2017, Nanobiotechnology advances in enzymatic biosensors for the agri-food industry, Environ. Chem. Lett., 15, 555, 10.1007/s10311-017-0640-4
Antunes, 2019, Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches, 3, Biotech, 9, 230
Kuhad, 1997, Microorganisms and enzymes involved in the degradation of plant fiber cell walls, 45
Fengel, 1984, Chemical composition and analysis of wood, Wood, 26
Desvaux, 2005, Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia, FEMS Microbiol. Rev., 29, 741, 10.1016/j.femsre.2004.11.003
Laureano-Perez, 2005, Understanding factors that limit enzymatic hydrolysis of biomass, Appl. Biochem. Biotechnol., 124, 1081, 10.1385/ABAB:124:1-3:1081
Eriksson, 2012
de Vries, 2001, Aspergillus enzymes involved in degradation of plant cell wall polysaccharides, Microbiol. Mol. Biol. Rev., 65, 497, 10.1128/MMBR.65.4.497-522.2001
Saha, 2003, Hemicellulose bioconversion, J. Ind. Microbiol. Biotechnol., 30, 279, 10.1007/s10295-003-0049-x
LeVan, 1990, Effects of fire retardant chemicals on bending properties of wood at elevated temperatures, Res. Pap, Research paper FPL-RP-498, 1
Hendriks, 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol., 100, 10, 10.1016/j.biortech.2008.05.027
Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification, Bioresour. Technol., 74, 17, 10.1016/S0960-8524(99)00160-1
Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour. Technol., 74, 25, 10.1016/S0960-8524(99)00161-3
Chandra, 2007, Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?, Biofuels, Springer, 67, 10.1007/10_2007_064
Ghosh, 1993, Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass, 295, 10.1016/S0065-2164(08)70598-7
Polizeli, 2005, Xylanases from fungi: properties and industrial applications, Appl. Microbiol. Biotechnol., 67, 577, 10.1007/s00253-005-1904-7
Ralph, 2004, Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids, Phytochem. Rev., 3, 29, 10.1023/B:PHYT.0000047809.65444.a4
Adler, 1977, Lignin chemistry—past, present and future, Wood Sci. Technol., 11, 169, 10.1007/BF00365615
Burnow, 2001, Method to reveal the structure of lignin. Lignin humic substances and coal, Biopolymers, 1, 89
Kuhad, 1993, Lignocellulose biotechnology: current and future prospects, Crit. Rev. Biotechnol., 13, 151, 10.3109/07388559309040630
Pointing, 2001, Feasibility of bioremediation by white-rot fungi, Appl. Microbiol. Biotechnol., 57, 20, 10.1007/s002530100745
Boerjan, 2003, Lignin biosynthesis, Annu. Rev. Plant Biol., 54, 519, 10.1146/annurev.arplant.54.031902.134938
R.M. Rowell, R. Pettersen, J.S. Han, J.S. Rowell, M.A. Tshabalala, Cell wall chemistry, Handbook of wood chemistry and wood composites, 2 (2005).
Chang, 2000, Fundamental factors affecting biomass enzymatic reactivity, 5
Brownell, 1987, Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis, Biotechnol. Bioeng., 29, 228, 10.1002/bit.260290213
Converse, 1993, 93
Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev., 66, 506, 10.1128/MMBR.66.3.506-577.2002
Zhu, 2010, Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation, Bioresour. Technol., 101, 4992, 10.1016/j.biortech.2009.11.007
Zheng, 2014, Extrusion pretreatment of lignocellulosic biomass: a review, Int. J. Mol. Sci., 15, 18967, 10.3390/ijms151018967
Zakaria, 2014, Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis, Appl. Biochem. Biotechnol., 173, 1778, 10.1007/s12010-014-0964-5
Lu, 2011, Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency, Bioresour. Technol., 102, 7937, 10.1016/j.biortech.2011.06.065
Zhu, 2015, Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes, Sustain. Chem. Process., 3, 15, 10.1186/s40508-015-0041-6
Zhu, 2015, Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries, Matrix, 10, 16
Zhu, 2016, Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment, Biomass Bioenergy, 93, 269, 10.1016/j.biombioe.2016.06.017
Gogate, 2011, Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems, Chem. Eng. J., 166, 1066, 10.1016/j.cej.2010.11.069
Aimin, 2005, Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose, Ultrason. Sonochem., 12, 467, 10.1016/j.ultsonch.2004.07.003
Rehman, 2013, Use of ultrasound in the production of bioethanol from lignocellulosic biomass, Energy Educ. Sci. Technol. Part A: Energy Sci. Res., 30, 1931
Kumar, 2009, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res., 48, 3713, 10.1021/ie801542g
Yu, 2016, Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery, Bioresour. Technol., 199, 194, 10.1016/j.biortech.2015.08.073
Saha, 2005, Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnol. Prog., 21, 816, 10.1021/bp049564n
Xu, 2009, Pretreatment on corn stover with low concentration of formic acid, J. Microbiol. Biotechnol., 19, 845
Shuai, 2010, Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production, Bioresour. Technol., 101, 3106, 10.1016/j.biortech.2009.12.044
Digman, 2010, Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production, Bioresour. Technol., 101, 5305, 10.1016/j.biortech.2010.02.014
Lee, 2011, Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol, Bioresour. Technol., 102, 7451, 10.1016/j.biortech.2011.05.022
Mosier, 2002, Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation, Biotechnol. Bioeng., 79, 610, 10.1002/bit.10316
Cheng, 2010, Evaluation of high solids alkaline pretreatment of rice straw, Appl. Biochem. Biotechnol., 162, 1768, 10.1007/s12010-010-8958-4
McIntosh, 2010, Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment, Bioresour. Technol., 101, 6718, 10.1016/j.biortech.2010.03.116
Ibrahim, 2011, Comparison of alkaline pulping with steam explosion for glucose production from rice straw, Carbohydr. Polym., 83, 720, 10.1016/j.carbpol.2010.08.046
Sills, 2011, Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass, Bioresour. Technol., 102, 1389, 10.1016/j.biortech.2010.09.035
Sharma, 2018, Ethanol production from NaOH pretreated rice straw: a cost effective option to manage rice crop residue, Waste Biomass Valorization, 1
Ben-Ghedalia, 1981, The effect of combined chemical and enzyme treatments on the saccharification and in vitro digestion rate of wheat straw, Biotechnol. Bioeng., 23, 823, 10.1002/bit.260230412
Neely, 1984, Factors affecting the pretreatment of biomass with gaseous ozone, Biotechnol. Bioeng., 26, 59, 10.1002/bit.260260112
Vidal, 1988, Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust, Biomass, 16, 1, 10.1016/0144-4565(88)90012-1
Quesada, 1999, Ozonation of lignin rich solid fractions from corn stalks, J. Wood Chem. Technol., 19, 115, 10.1080/02773819909349603
Zavrel, 2009, High-throughput screening for ionic liquids dissolving (ligno-) cellulose, Bioresour. Technol., 100, 2580, 10.1016/j.biortech.2008.11.052
Behera, 2014, Importance of chemical pretreatment for bioconversion of lignocellulosic biomass, Renew. Sustain. Energy Rev., 36, 91, 10.1016/j.rser.2014.04.047
Li, 2011, Efficient enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by microwave pretreatment, BioResources, 6, 4494, 10.15376/biores.6.4.4494-4504
Yamada, 2017, Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts, Appl. Biochem. Biotechnol., 182, 229, 10.1007/s12010-016-2322-2
An, 2015, Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse, Bioresour. Technol., 192, 165, 10.1016/j.biortech.2015.05.064
Nargotra, 2018, Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production, Bioresour. Technol., 267, 560, 10.1016/j.biortech.2018.07.070
Yu, 2018, Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose, Ultrason. Sonochem., 41, 410, 10.1016/j.ultsonch.2017.09.003
Bahrani, 2015, Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1, 3-dimethylimadazolium dimethyl phosphate, Bioresour. Technol., 185, 411, 10.1016/j.biortech.2015.02.085
Li, 2016, Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes, Biotechnol. Biofuels, 9, 166, 10.1186/s13068-016-0578-y
Rabemanolontsoa, 2016, Various pretreatments of lignocellulosics, Bioresour. Technol., 199, 83, 10.1016/j.biortech.2015.08.029
Jacquet, 2012, Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers, Bioresour. Technol., 121, 221, 10.1016/j.biortech.2012.06.073
Agbor, 2011, Biomass pretreatment: fundamentals toward application, Biotechnol. Adv., 29, 675, 10.1016/j.biotechadv.2011.05.005
Yang, 2004, Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose, Biotechnol. Bioeng., 86, 88, 10.1002/bit.20043
Phaiboonsilpa, 2009, Chemical conversion of lignocellulosics as treated by two-step semi-flow hot-compressed water, Zero-Carbon Energy Kyoto, 2010, 166
Ogura, 2013, Two-step decomposition behavior of rice straw as treated by semi-flow hot-compressed water, J. Jpn. Inst. Energy, 92, 456, 10.3775/jie.92.319
Á.T. Martínez, M. Speranza, F.J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M.J. Martínez, A. Gutiérrez Suárez, J.C.d. Río Andrade, Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin, (2005).
J. Buswell, Fungal degradation of lignin, Plant Litter Quality and Decomposition, (1991).
Corbett, 1965, Micro-morphological studies on the degradation of lignified cell walls by Ascomycetes and Fungi Imperfecti, J. Inst. Wood Sci., 14, 18
Daniel, 2003, Microview of wood under degradation by bacteria and fungi, in, ACS Publications
Eaton, 1993
Niemenmaa, 1992, Demethoxylation of a [O14CH3]-labelled lignin model compound by white-rot and brown-rot fungi, 27
Wilcox, 1970, Anatomical changes in wood cell walls attacked by fungi and bacteria, Bot. Rev., 36, 1, 10.1007/BF02859153
R. Christmas, R. Oglesby, Microbiological degradation and the formation of humus, Sarkanen, KV Lignins, (1971).
L. Ryvarden, Genera of polypores: nomenclature and taxonomy, Synopsis fungi, 5 (1991).
W.W. Wilcox, Changes in wood microstructure through progressive stages of decay, Research paper FPL no. 70. Madison, WI: USDA, Forest Service, Forest Products Laboratory. P. 45, 70 (1968).
T. Higuchi, Catabolic pathways and role of ligninases for the degradation of lignin substructure models by white-rot fungi (1986).
Umezawa, 1987, Mechanism of aromatic ring cleavage of β-O-4 lignin substructure models by lignin peroxidase, FEBS Lett., 218, 255, 10.1016/0014-5793(87)81057-8
Kawai, 1988, Aromatic ring cleavage of 4, 6-di (tert-butyl) guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor, FEBS Lett., 236, 309, 10.1016/0014-5793(88)80043-7
Kirk, 1975, Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood, Holz. Int. J. Biol. Chem. Phys. Technol. Wood, 29, 99
Glenn, 1983, An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun., 114, 1077, 10.1016/0006-291X(83)90672-1
Ander, 1977, Selective degradation of wood components by white-rot fungi, Physiol. Plant., 41, 239, 10.1111/j.1399-3054.1977.tb04877.x
Blanchette, 1995, Degradation of the lignocellulose complex in wood, Can. J. Bot., 73, 999, 10.1139/b95-350
Eriksson, 1978, Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum, Biotechnol. Bioeng., 20, 317, 10.1002/bit.260200302
Sachs, 2007, Biomechanical pulping of aspen chips by Phanerochaete chrysosporium: fungal growth pattern and effects on wood cell walls, Wood Fiber Sci., 21, 331
Liese, 1970, Ultrastructural aspects of woody tissue disintegration, Annu. Rev. Phytopathol., 8, 231, 10.1146/annurev.py.08.090170.001311
Blanchette, 1988, Selection of white-rot fungi for biopulping, Biomass, 15, 93, 10.1016/0144-4565(88)90099-6
J.M. Barrasa, A.E. González, A.T. Martínez, Ultrastructural aspects of fungal delignification of Chilean woods by Ganoderma australe and Phlebia chrysocrea. A study of natural and in vitro degradation, in, Walter de Gruyter, Berlin/New York, 1992.
Verma, 2015, Recent advances in feedstocks and enzyme-immobilised technology for effective transesterification of lipids into biodiesel, 87
Kumar, 2018, Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications, Mater. Sci. Energy Technol., 1, 38
Kumar, 2019, Engineered nanomaterial assisted signal-amplification strategies for enhancing analytical performance of electrochemical biosensors, Electroanalysis, 31, 1615, 10.1002/elan.201900216
Verma, 2019, Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications, Environ. Chem. Lett.
Verma, 2019, Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications, 147, 10.1007/978-3-030-16538-3_4
Allen, 2001, A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust, Ind. Eng. Chem. Res., 40, 2352, 10.1021/ie000579+
Bootsma, 2007, Cellobiose hydrolysis using organic–inorganic hybrid mesoporous silica catalysts, Appl. Catal. A, 327, 44, 10.1016/j.apcata.2007.03.039
Zhang, 2008, Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles, Nanotechnology, 19
Lai, 2011, Hydrolysis of biomass by magnetic solid acid, Energy Environ. Sci., 4, 3552, 10.1039/c1ee01526e
Peña, 2011, Cellobiose hydrolysis using acid-functionalized nanoparticles, Biotechnol. Bioprocess Eng., 16, 1214, 10.1007/s12257-011-0166-8
Wang, 2015, Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis, J. Phys. Chem. C, 119, 26020, 10.1021/acs.jpcc.5b08743
Ji, 2013, Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study, Bioresour. Technol., 133, 45, 10.1016/j.biortech.2013.01.128
Duque, 2013
Abraham, 2014, Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass, Biotechnol. Biofuels, 7, 90, 10.1186/1754-6834-7-90
Huang, 2015, Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid, Biomed Res. Int., 2015
Su, 2015, Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave, Sci. Rep., 5, 17538, 10.1038/srep17538
Song, 2016, Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion, AIMS Bioeng., 3, 264, 10.3934/bioeng.2016.3.264
Srivastava, 2016, Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001, Front. Microbiol., 7, 514, 10.3389/fmicb.2016.00514
Baskar, 2016, Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production, Renewable Energy, 98, 23, 10.1016/j.renene.2016.04.035
Sánchez-Ramírez, 2017, Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis, Bioprocess Biosyst. Eng., 40, 9, 10.1007/s00449-016-1670-1
Ingle, 2017, Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production, Cellulose, 24, 5529, 10.1007/s10570-017-1517-1
Dutta, 2019, Nanoparticle-induced enzyme pretreatment method for increased glucose production from lignocellulosic biomass under cold conditions, J. Sci. Food Agric., 99, 767, 10.1002/jsfa.9245
Gaikwad, 2019, Immobilized nanoparticles-mediated enzymatic hydrolysis of cellulose for clean sugar production: a novel approach, Curr. Nanosci., 15, 296, 10.2174/1573413714666180611081759
Qi, 2018, Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis, ACS Sustainable Chem. Eng., 6, 3640, 10.1021/acssuschemeng.7b03959
Dahmen, 2019, Integrated lignocellulosic value chains in a growing bioeconomy, GCB Bioenergy, 11, 107, 10.1111/gcbb.12586
Verma, 2016, Recent trends in nanomaterials immobilised enzymes for biofuel production, Crit. Rev. Biotechnol., 36, 108, 10.3109/07388551.2014.928811
Verma, 2013, Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis, Bioresour. Technol., 145, 302, 10.1016/j.biortech.2013.01.065
Verma, 2013, Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: Structural and biocatalytic characterization, PLoS ONE, 8, 10.1371/journal.pone.0073642
Verma, 2013, Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis, Bioresour. Technol., 135, 2, 10.1016/j.biortech.2013.01.047
Verma, 2013, Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production, Appl. Microbiol. Biotechnol., 97, 23, 10.1007/s00253-012-4535-9
Puri, 2013, Enzyme immobilization on nanomaterials for biofuel production, Trends Biotechnol., 31, 215, 10.1016/j.tibtech.2013.01.002
Kumar, 2019, Advance engineered nanomaterials in point-of-care immunosensing for biomedical diagnostics, Immunosensors, 238, 10.1039/9781788016162-00238
Kanwar, 2010, Lipases, 1
Verma, 2010, Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372, Acta Microbiol. Immunol. Hung., 57, 187, 10.1556/AMicr.57.2010.3.4
Verma, 2017, Fungus-mediated bioleaching of metallic nanoparticles from agro-industrial by-products, 89, 10.1007/978-3-319-68424-6_5