Kỹ thuật phân tích NanoSIMS và ứng dụng của nó trong khoa học địa chất

Science China Earth Sciences - Tập 58 - Trang 1758-1767 - 2015
Wei Yang1, Sen Hu1, JianChao Zhang1, JiaLong Hao1, YangTing Lin1
1Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Mặc dù sự cải thiện đáng kể về độ phân giải không gian, NanoSIMS vẫn duy trì độ phân giải khối lượng tương đối cao, độ nhạy và độ chính xác phân tích. Nó đã trở thành một nền tảng phân tích quan trọng để xác định thành phần hóa học của các vật liệu rắn, và đã được sử dụng rộng rãi trong các lĩnh vực khoa học như không gian, địa chất, khoa học sự sống và vật liệu, v.v. Bằng cách sử dụng chùm ion Cs+ có kích thước nhỏ chỉ 50 nm quét qua bề mặt mẫu, chúng tôi có thể thu được hình ảnh có độ phân giải không gian cao của tối đa 7 loại đồng vị cùng một lúc. Khi sử dụng cốc Faraday, độ chính xác phân tích cao từ 0,3‰ đến 0,5‰ (1SD) cho phân tích đồng vị C, O và S có thể đạt được. Mặc dù mức độ chính xác này vẫn thấp hơn so với SIMS thông thường, nhưng nó đã đáp ứng được các yêu cầu chính của khoa học địa chất. Vào năm 2011, NanoSIMS đầu tiên của Trung Quốc (Cameca NanoSIMS 50L) đã được lắp đặt tại Viện Địa chất và Địa vật lý, Học viện Khoa học Trung Quốc. Dựa trên cơ chế hoạt động và các chế độ phân tích của thiết bị, bài báo này sẽ giới thiệu một cách hệ thống các phương pháp phân tích được thiết lập với NanoSIMS và các ứng dụng tiềm năng của chúng trong khoa học địa chất. Các phương pháp này bao gồm hình ảnh phân bố nguyên tố vi lượng trong phân vùng khoáng sản, xác định tuổi Pb-Pb và U-Pb với độ phân giải không gian cao (2–5 μm), phân tích hàm lượng nước và đồng vị H cho kính silicate và apatite, phân tích đồng vị C cho kim cương và than chì, phân tích đồng vị O cho cacbonat, phân tích đồng vị S cho sulfide. Bên cạnh đó, các yêu cầu cụ thể cho việc chuẩn bị mẫu cũng sẽ được giới thiệu nhằm tạo điều kiện thuận lợi cho việc sử dụng của các nhà khoa học địa chất trong nước.

Từ khóa

#NanoSIMS #khoa học địa chất #phân tích đồng vị #bụi vi mô #phân tích nguyên tố vi lượng

Tài liệu tham khảo

Affek H P, Bar-Matthews M, Ayalon A, et al. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta, 72: 5351–5360 Anders E, Ebihara M. 1982. Solar-system abundances of the elements. Geochim Cosmochim Acta, 46: 2363–2380 Aubaud C, Withers A C, Hirschmann M M, et al. 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral, 92: 811–828 Badro J, Ryerson F J, Weber P K, et al. 2007. Chemical imaging with NanoSIMS: A window into deep-Earth geochemistry. Earth Planet Sci Lett, 262: 543–551 Barker S L L, Hickey K A, Cline J S, et al. 2009. Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposites. Econ Geol, 104: 897–904 Bontognali T R R, Sessions A L, Allwood A C, et al. 2012. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Natl Acad Sci USA, 109: 15146–15151 Boyd S R, Mattey D P, Pillinger C T, et al. 1987. Multiple growth events during diamond genesis: An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett, 86: 341–353 Bradley J P, Ishii H A, Gillis-Davis J J, et al. 2014. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc Natl Acad Sci USA, 111: 1732–1735 Carley T, Miller C, Wooden J, et al. 2011. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas. Mineral Petrol, 102: 135–161 Coltice N, Simon L, Lecuyer C. 2004. Carbon isotope cycle and mantle structure. Geophys Res Lett, 31: L05603 Craddock P R, Rouxel O J, Ball L A, et al. 2008. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem Geol, 253: 102–113 Craig H. 1965. The measurement of oxygen isotope paleotemperatures. In: Tongiorgi E, ed. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto: Lab Geol Nucl Pisa. 161–182 Dark C, Kilburn M R, Hammerl G, et al. 2006. NanoSIMS analysis of Ca doping at a grain boundary in a superconducting YBCO Ca-123/123 bicrystal. J Phys-Conf Ser, 43: 272–276 Deloule E, Paillat O, Pichavant M, et al. 1995. Ion microprobe determination of water in Silicate-Glasses: Methods and applications. Chem Geol, 125: 19–28 Dobrzhinetskaya L F, Wirth R, Green H W. 2007. A look inside of diamond-forming media in deep subduction zones. Proc Natl Acad Sci USA, 104: 9128–9132 Eldridge C S, Compston W, Williams I S, et al. 1991. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353: 649–653 Farquhar J, Hauri E, Wang J. 1999. New insights into carbon fluid chemistry and graphite precipitation: SIMS analysis of granulite facies graphite from Ponmudi, South India. Earth Planet Sci Lett, 171: 607–621 Fitzsimons I, Harte B, Chinn I, et al. 1999. Extreme chemical variation in complex diamonds from George Creek, Colorado: A SIMS study of carbon isotope composition and nitrogen abundance. Mineral Mag, 63: 857–857 Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897 Gardner J, Carey S, Rutherford M, et al. 1995. Petrologic diversity in Mount St. Helens dacites during the last 4000 years: Implications for magma mixing. Contrib Mineral Petrol, 119: 224–238 Greenwood J, Itoh S, Sakamoto N, et al. 2014. Hydrogen isotopes of water in the moon: Evidence for the giant impact model from melt inclusions and apatite in apollo rock samples. Lunar and Planetary Institute Science Conference Abstracts. 2707 Greenwood J, Itoh S, Sakamoto N, et al. 2008. Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett, 35: L05203 Greenwood J, Itoh S, Sakamoto N. et al. 2011. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature, 4: 1–4 Hauri E, Wang J, Dixon J E, et al. 2002. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol, 183: 99–114 Hauri E, Weinreich T, Saal A E, et al. 2011. High pre-eruptive water contents preserved in lunar melt inclusions. Science, 333: 213–215 Herrmann A M, Ritz K, Nunan N, et al. 2007. Nano-scale secondary ion mass spectrometry-A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol Biochem, 39: 1835–1850 Hoppe P. 2006. NanoSIMS: A new tool in cosmochemistry. Appl Surf Sci, 252: 7102–7106 Hoskin P, Arslan M, Aslan Z, et al. 1998. Clinopyroxene phenocryst formation in an alkaline magma: Interpretations from oscillatory zoning. Mineral Mag, 62: 653–654 Hsu W B. 2005. Ion Microprobe Techniques and Applications in Cosmochemistry and Geochemistry. Geological Journal of China Universities, 11: 239–252 Hu S, Lin Y, Zhang J, et al. 2014. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim Cosmochim Acta, 140: 321–333 Ireland T R, Williams I S. 2003. Considerations in Zircon Geochronology by SIMS. Rev Mineral Geochem, 53: 215–241 Kita N T, Ushikubo T, Fu B, et al. 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol, 264: 43–57 Klemetti E W, Deering C D, Cooper K M, et al. 2011. Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett, 305: 185–194 Koga K, Hauri E, Hirschmann M, et al. 2003. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst, 4: 1019, doi: 10.1029/2002GC000378 Kozdon R, Kita N T, Huberty J M, et al. 2010. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of 3.5Ga Pilbara cherts. Chem Geol, 275: 243–253 L’Heureux I, Fowler A D. 1996. Dynamical model of oscillatory zoning in plagioclase with nonlinear partition relation. Geophys Res Lett, 23: 17–20 Lechene C, Hillion F, McMahon G, et al. 2006. High-resolution quantita tive imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol, 5: 20 Lechene C P, Luyten Y, McMahon G, et al. 2007. Quantitative Imaging of Nitrogen Fixation by Individual Bacteria Within Animal Cells. Science, 317: 1563–1566 Li X, Tang G, Gong B, et al. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin Sci Bull, 58: 4647–4654 Li X, Liu Y, Li Q L, et al. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 10: Q04010, doi: 10.1029/2009GC-002400 Lin Y, Feng L, Hao J, et al. 2014. Sintering nano-crystalline calcite: A new method of synthesizing homogeneous reference materials for SIMS analysis. J Anal At Spectrom, 29:1686–1691 Liu Y, Li X H, Li Q L, et al. 2011. Precise U-Pb zircon dating at a scale of <5 micron by the CAMECA 1280 SIMS using a Gaussian illumination probe. J Anal At Spectrom, 26: 845–851 Loomis T. 1982. Numerical simulations of crystallization processes of plagioclase in complex melts: The origin of major and oscillatory zoning in plagioclase. Contrib Mineral Petrol, 81: 219–229 McCubbin F M, Steele A, Hauri E H, et al. 2010. Nominally hydrous magmatism on the Moon. Proc Natl Acad Sci USA, 107: 11223–11228 McPhail D. 2006. Applications of Secondary Ion Mass Spectrometry (SIMS) in materials science. J Mater Sci, 41: 873–903 Meibom A, Cuif J P, Houlbreque F, et al. 2008. Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta, 72: 1555–1569 Messenger S, Keller L P, Stadermann F J, et al. 2003. Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300: 105–108 Mojzsis SJ, Coath C D, Greenwood J P, et al. 2003. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta, 67: 1635–1658 Musat N, Halm H, Winterholler B, et al. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA, 105: 17861–17866 Nadeau S L, Epstein S, Stolper E. 1999. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites. Geochim Cosmochim Acta, 63: 1837–1851 Nichols A, Wysoczanski R. 2007. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem Geol, 242: 371–384 Nishizawa M, Maruyama S, Urabe T, et al. 2010. Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early archean pyrite. Rapid Commun Mass Sp, 24: 1397–1404 Orland I J, Bar-Matthews M, Ayalon A, et al. 2012. Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochim Cosmochim Acta, 89: 240–255 Page F Z, Ushikubo T, Kita N T, et al. 2007. High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. Am Mineral, 92: 1772–1775 Palot M, Pearson D, Stern R, et al. 2014. Isotopic constraints on the nature and circulation of deep mantle C-H-O-N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim Cosmochim Acta, 139: 26–46 Papineau D, Mojzsis S J, Coath C D, et al. 2005. Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta, 69: 5033–5060 Pokhilenko N P, Sobolev N V, Reutsky V N, et al. 2004. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: Evidence of ultradeep and enriched lithospheric mantle. Lithos, 77: 57–67 Prechtel F, Stalder R. 2010. FTIR spectroscopy with a focal plane array detector: A novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite. Am Mineral, 95: 888–891 Riciputi L R, Paterson B A, Ripperdan R L. 1998. Measurement of light stable isotope ratios by SIMS: Matrix effects for oxygen, carbon, and sulfur isotopes in minerals 33 Dedicated to the memory of Al Nier. Int J Mass Spectrom, 178: 81–112 Russell S S, Arden J W, Pillinger C T. 1996. A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteorit Planet Sci, 31: 343–355 Shore M, Fowler A D. 1996. Oscillatory zoning in minerals: A common phenomenon. Can Mineral, 34: 1111–1126 Singer B S, Dungan M A, Layne G D. 1995. Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. Am Mineral, 80: 776–798 Smart K A, Chacko T, Stachel T, et al. 2011. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim Cosmochim Acta, 75: 6027–6047 Stichler W. 1995. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825: 67–74 Sugiura N, Hoshino H. 2000. Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphere. Meteorit Planet Sci, 35: 373–380 Wang W, Liu X, Hu J, et al. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Res, 251: 181–196 Wang Y, Merino E. 1992. Dynamic model of oscillatory zoning of trace elements in calcite: Double layer, inhibition, and self-organization. Geochim Cosmochim Acta, 56: 587–596 Watson L L, Hutcheon I D, Epstein S, et al. 1994. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science, 265: 86–90 Whitehouse M J. 2013. Multiple sulfur isotope determination by SIMS: Evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand Geoanal Res, 37: 19–33 Winterholler B, Hoppe P, Andreae M O, et al. 2006. Measurement of sulfur isotope ratios in micrometer-sized samples by NanoSIMS. Appl Surf Sci, 252: 7128–7131 Yang W, Lin Y T, Zhang J C, et al. 2012. Precise micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS. J Anal At Spectrom, 27: 479–487 Zhang H F. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 237: 768–780 Zhang J, Lin Y, Yang W, et al. 2014. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. J Anal At Spectrom, 29: 1934–1943 Zhang Y, Zindler A. 1993. Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett, 117: 331–345 Zinner E, McKeegan K D, Walker R M. 1983. Laboratory measurements of D/H ratios in interplanetary dust. Nature, 305: 119–121 Zinner E K, Moynier F, Stroud R M. 2011. Laboratory technology and cosmochemistry. Proc Natl Acad Sci USA, 108: 19135–19141