Nano-spatially confined and interface-controlled lithiation–delithiation in an <i>in situ</i> formed (SnS–SnS<sub>2</sub>–S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries

Journal of Materials Chemistry A - Tập 7 Số 25 - Trang 15320-15332
Deliang Cheng1,2,3,4,5, Lichun Yang1,2,3,4,5, Jun Liu1,2,3,4,5, Renzong Hu1,2,3,4,5, Ke Pei6,7,8,9,10, Min Zhu1,2,3,4,5, Renchao Che6,7,8,9,10
1China
2Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
3Guangzhou 510641
4School of Materials Science and Engineering
5South China University of Technology
6Collaborative Innovation Center of Chemistry for Energy Materials
7Department of Materials Science
8Fudan University
9Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China
10Shanghai

Tóm tắt

The nano-spatially confined and interface-controlled lithiation/delithiation endows an in situ formed (SnS–SnS2–S)/FLG composite with ultrafast and ultrastable lithium storage.

Từ khóa


Tài liệu tham khảo

Armand, 2008, Nature, 451, 652, 10.1038/451652a

Han, 2018, Nat. Commun., 9, 402, 10.1038/s41467-017-02808-2

Zhou, 2013, Adv. Mater., 25, 2152, 10.1002/adma.201300071

Hu, 2017, Adv. Mater., 29, 1

Liu, 2015, J. Mater. Chem. A, 3, 5259, 10.1039/C5TA00431D

Zhu, 2015, Adv. Sci., 2, 8

Vaughn, 2012, Chem. Commun., 48, 5608, 10.1039/c2cc32033a

Seo, 2008, Adv. Mater., 20, 4269, 10.1002/adma.200703122

Wei, 2018, J. Mater. Chem. A, 6, 12185, 10.1039/C8TA02695E

Wang, 2014, ChemSusChem, 7, 308, 10.1002/cssc.201300241

Zhang, 2015, Electrochim. Acta, 176, 1296, 10.1016/j.electacta.2015.07.140

Xiong, 2017, Energy Environ. Sci., 10, 1757, 10.1039/C7EE01628J

Zhou, 2014, ACS Nano, 8, 8323, 10.1021/nn503582c

Zhang, 2015, Adv. Funct. Mater., 25, 481, 10.1002/adfm.201402833

Liu, 2016, ACS Appl. Mater. Interfaces, 8, 8502, 10.1021/acsami.6b00627

Lu, 2013, Nano Res., 6, 55, 10.1007/s12274-012-0281-7

Tripathi, 2014, RSC Adv., 4, 10358, 10.1039/c3ra46308g

Zhou, 2016, J. Mater. Chem. A, 4, 10906, 10.1039/C6TA03076A

Li, 2007, Electrochem. Commun., 9, 49, 10.1016/j.elecom.2006.08.019

Lian, 2017, J. Power Sources, 366, 1, 10.1016/j.jpowsour.2017.09.009

Xue, 2018, Carbon, 134, 222, 10.1016/j.carbon.2018.04.003

Li, 2014, Electrochim. Acta, 136, 355, 10.1016/j.electacta.2014.05.080

Zhang, 2012, J. Mater. Chem., 22, 23091, 10.1039/c2jm34864k

Zhao, 2017, ACS Appl. Mater. Interfaces, 9, 1407, 10.1021/acsami.6b10708

Liu, 2014, Nat. Nanotechnol., 9, 187, 10.1038/nnano.2014.6

Shilpa, 2017, J. Mater. Chem. A, 5, 14220, 10.1039/C7TA01766A

Jiang, 2015, Energy Environ. Sci., 8, 1471, 10.1039/C5EE00314H

Hu, 2017, Energy Environ. Sci., 10, 2017, 10.1039/C7EE01635B

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Xu, 2013, Energy Environ. Sci., 6, 1388, 10.1039/c3ee23870a

Chen, 2012, Adv. Energy Mater., 2, 95, 10.1002/aenm.201100464

Dai, 2006, Acta Metall. Sin., 19, 411, 10.1016/S1006-7191(06)62081-4

Ferrari, 2000, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095, 10.1103/PhysRevB.61.14095

Cheng, 2017, J. Power Sources, 350, 1, 10.1016/j.jpowsour.2017.03.043

Sathish, 2012, J. Phys. Chem. C, 116, 12475, 10.1021/jp303121n

Sun, 2014, J. Power Sources, 268, 610, 10.1016/j.jpowsour.2014.06.039

Liu, 2013, J. Power Sources, 242, 114, 10.1016/j.jpowsour.2013.05.087

Xiong, 2016, ACS Nano, 10, 10953, 10.1021/acsnano.6b05653

Shi, 2017, Carbon, 123, 186, 10.1016/j.carbon.2017.07.062

Yi, 2013, Adv. Energy Mater., 3, 295, 10.1002/aenm.201200857

Jeong, 2017, Nano Lett., 17, 5600, 10.1021/acs.nanolett.7b02433

Liu, 2016, Nano Lett., 16, 4501, 10.1021/acs.nanolett.6b01711

Ma, 2017, Nano Lett., 17, 3959, 10.1021/acs.nanolett.7b01674

Park, 2016, Sci. Rep., 6, 8, 10.1038/s41598-016-0016-1

Li, 2017, Energy Storage Materials, 6, 98, 10.1016/j.ensm.2016.09.005

Wang, 2017, Chem. Eng. J., 328, 591, 10.1016/j.cej.2017.07.039

Luo, 2012, Energy Environ. Sci., 5, 5226, 10.1039/C1EE02800F

Jiang, 2012, J. Mater. Chem., 22, 9494, 10.1039/c2jm30856h

Kang, 2010, Electrochem. Commun., 12, 307, 10.1016/j.elecom.2009.12.025

Tao, 2014, J. Electroanal. Chem., 728, 134, 10.1016/j.jelechem.2014.07.004

Li, 2015, RSC Adv., 5, 46941, 10.1039/C5RA07292A

Zhao, 2017, Nanoscale, 9, 17922, 10.1039/C7NR06798D

Hu, 2016, Energy Environ. Sci., 9, 595, 10.1039/C5EE03367E

Zhao, 2018, J. Power Sources, 378, 81, 10.1016/j.jpowsour.2017.12.005

Shin, 2011, Adv. Funct. Mater., 21, 3464, 10.1002/adfm.201002527

Long, 2018, Adv. Energy Mater., 8, 1, 10.1002/aenm.201701681

Augustyn, 2013, Nat. Mater., 12, 518, 10.1038/nmat3601

Yang, 2016, J. Mater. Chem. A, 4, 10842, 10.1039/C6TA03083A

Choi, 2015, ACS Nano, 9, 10173, 10.1021/acsnano.5b03822