Nano-indentation and Corrosion Characteristics of Ultrasonic Vibration Assisted Stir-Cast AZ31–WC–Graphite Nano-composites

International Journal of Metalcasting - Tập 15 Số 3 - Trang 1058-1072 - 2021
Sudip Banerjee1, Suswagata Poria2, Goutam Sutradhar3, Prasanta Sahoo1
1Jadavpur University, Kolkata, India
2Heritage Institute of Technology, Kolkata, India
3National Institute of Technology, Manipur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39(9–10), 851–865 (2008). https://doi.org/10.1007/s00170-007-1279-2

G.L. Makar, J. Kruger, Corrosion of magnesium. Int. Mater. Rev. 38(3), 138–153 (1993). https://doi.org/10.1179/imr.1993.38.3.138

R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review. Metals 4(1), 65–83 (2014). https://doi.org/10.3390/met4010065

Q.B. Nguyen, Y.H.M. Sim, M. Gupta, C.Y.H. Lim, Tribology characteristics of magnesium alloy AZ31B and its composites. TribolInt 82, 464–471 (2015). https://doi.org/10.1016/j.triboint.2014.02.024

A. Erman, J. Groza, X. Li, H. Choi, G. Cao, Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater. Sci. Eng. A 558, 39–43 (2012). https://doi.org/10.1016/j.msea.2012.07.048

G.K. Meenashisundaram, M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloys Compd. 593, 176–183 (2014). https://doi.org/10.1016/j.jallcom.2013.12.157

B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater. Des. 58, 475–481 (2014). https://doi.org/10.1016/j.matdes.2014.02.006

M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng., A 630, 36–44 (2015). https://doi.org/10.1016/j.msea.2015.02.002

M. Hardiman, T.J. Vaughan, C.T. McCarthy, Fibrous composite matrix characterization using nanoindentation: the effect of fibre constraint and the evolution from bulk to in situ matrix properties. Compos. Part A-Appl. Sci. Manuf. 68, 296–303 (2015). https://doi.org/10.1016/j.compositesa.2014.09.022

W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Nanoindentation and Scratch Resistance Characteristics of AZ31–WC Nanocomposites. J. Mol. Eng. Mater. (2020). https://doi.org/10.1142/s2251237319500072

S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Corrosion behavior of AZ31–WC nano-composites. J. Mag. Alloy 7(4), 681–695 (2019). https://doi.org/10.1016/j.jma.2019.07.004

A.E.A. Al-maamari, A.A. Iqbal, D.M. Nuruzzaman, Wear and mechanical characterization of Mg–Gr self-lubricating composite fabricated by mechanical alloying. J. Mag. Alloy 7(2), 283–290 (2019). https://doi.org/10.1016/j.jma.2019.04.002

P. Narayanasamy, N. Selvakumar, Tensile, compressive and wear behaviour of self-lubricating sintered magnesium based composites. Trans. Nonferrous Met. Soc. 27(2), 312–323 (2017). https://doi.org/10.1016/S1003-6326(17)60036-0

M. Endo, T. Hayashi, I. Itoh, Y.A. Kim, D. Shimamoto, H. Muramatsu, S. Koide, An anticorrosive magnesium/carbon nanotube composite. Appl. Phys. Lett. 92, 063105 (2008). https://doi.org/10.1063/1.2842411

K. Funatsu, H. Fukuda, R. Takei, J. Umeda, K. Kondoh, Quantitative evaluation of initial galvanic corrosion behavior of CNTs reinforced Mg–Al alloy. Adv. Powder Technol. 24(5), 833–837 (2013). https://doi.org/10.1016/j.apt.2013.02.002

M. Selvam, K. Saminathan, P. Siva, P. Saha, V. Rajendran, Corrosion behavior of Mg/graphene composite in aqueous electrolyte. Mater. Chem. Phys. 172, 129–136 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.051

J.S.S. Babu, K.P. Nair, G. Unnikrishnan, C.G. Kang, H.H. Kim, Fabrication and properties of magnesium (AM50)-based hybrid composites with graphite nanofiber and alumina short fiber. J. Compos. Mater. 44(8), 971–987 (2010). https://doi.org/10.1177/0021998309349548

S.K. Thakur, T.S. Srivatsan, M. Gupta, Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina. Mater. SciEng A 466(1–2), 32–37 (2007). https://doi.org/10.1016/j.msea.2007.02.122

A.K. Mondal, C. Blawert, S. Kumar, Corrosion behavior of creep-resistant AE42 magnesium alloy-based hybrid composites developed for powertrain applications. Mater. Corros. 66(10), 1150–1158 (2015). https://doi.org/10.1002/maco.201408071

S.K. Khatkar, R. Verma, S.S. Kharb, A. Thakur, R. Sharma, Optimization and Effect of reinforcements on the sliding wear behavior of self-lubricating AZ91D–SiC–Gr hybrid composites. Silicon (2020). https://doi.org/10.1007/s12633-020-00523-0

K.S. Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, V. Kavimani, Mechanical and wear behavior of Mg–SiC–Gr hybrid composites. J. Mag. Alloy 4(3), 197–206 (2016). https://doi.org/10.1016/j.jma.2016.08.001

I. Aatthisugan, A.R. Rose, D.S. Jebadurai, Mechanical and wear behavior of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Mag. Alloy 5(1), 20–25 (2017). https://doi.org/10.1016/j.jma.2016.12.004

B.M. Girish, B.M. Satish, S. Sarapure, Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metall. Mater. Trans. A 47(6), 3193–3200 (2016). https://doi.org/10.1007/s11661-016-3447-1

S.K. Katkar, N.M. Suri, S. Kant, A review on mechanical and tribological properties of graphite reinforced self-lubricating hybrid metal matrix composites. Rev. Adv. Mater. Sci. 56(1), 1–20 (2018). https://doi.org/10.1515/rams-2018-0036

S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Dry sliding tribological behavior of AZ31–WC nano-composites. J. Mag. Alloy 7(2), 315–327 (2019). https://doi.org/10.1016/j.jma.2018.11.005

S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Tribological behavior of Mg–WC nano-composites at elevated temperature. Mater. Res. Express 6(8), 0865c6 (2019). https://doi.org/10.1088/2053-1591/ab2379

S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Abrasive wear behavior of WC nanoparticle reinforced magnesium metal matrixcomposites. Surf. Topogr. Metrol. Prop. 8(2), 025001 (2020). https://doi.org/10.1088/2051-672X/ab82a1

N. Cuadrado, D. Casellas Padro, L.M. Llanes Pitarch, I. Gonzalez, J. Caro. Effect of crystal anisotropy on the mechanical properties of WC embedded in WC-Co cemented carbides. in Proceedings of the Euro PM2011 Powder Metallurgy Congress & Exhibition (pp. 215–220) (2011). http://hdl.handle.net/2117/14784

G. Cao, H. Choi, J. Oportus, H. Konishi, X. Li, Study on tensile properties and microstructure of cast AZ91D/Al Nanocomposites. Mater. Sci. Eng. A 494, 127–131 (2008). https://doi.org/10.1016/j.msea.2008.04.070

C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432–1439 (2008). https://doi.org/10.1016/j.compscitech.2007.10.057

M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J. Nanosci. Nanotechnol. 10(2), 956–964 (2010). https://doi.org/10.1166/jnn.2010.1809

O. Guler, Y. Say, B. Dikici, The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites. J. Compos. Mater. (2020). https://doi.org/10.1177/0021998320933345

M. Rashad, F. Pan, A. Tang et al., Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 49, 285–293 (2015). https://doi.org/10.1177/0021998313518360

X. Du, W. Du, Z. Wang et al., Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater. SciEng A 711, 633–642 (2018). https://doi.org/10.1016/j.msea.2017.11.040

L. Wu, C. Wang, D.B. Pokharel, I.I.N. Etim, L. Zhao, J. Dong, N. Chen, Effect of applied potential on the microstructure, composition and corrosion resistance evolution of fluoride conversion film on AZ31 magnesium alloy. J. Mater. Sci. Technol. 34, 2084–2090 (2018). https://doi.org/10.1016/j.jmst.2018.04.009

V. Kavimani, K.S. Prakash, M.S. Starvin, B. Kalidas, V. Viswamithran, S.R. Arun, Tribo-surface characteristics and wear behaviour of SiC@ r-GO/Mg composite worn under varying control factor. Silicon 12, 1–11 (2019). https://doi.org/10.1007/s12633-019-0095-2

H.R. Bakhsheshi-Rad, E. Hamzah, H.Y. Tok, M. Kasiri-Asgarani, S. Jabbarzare, M. Medraj, Microstructure, in vitro corrosion behavior and cytotoxicity of biodegradable Mg–Ca–Zn and Mg–Ca–Zn–Bi alloys. J. Mater. Eng. Perform. 26, 653–666 (2017). https://doi.org/10.1007/s11665-016-2499-0

E.S.M. Sherif, A.A. Almajid, Corrosion of magnesium/manganese alloy in chloride solutions and its inhibition by 5-(3-aminophenyl)-tetrazole. Int. J. Electrochem. Sci. 6, 2131–2148 (2011)

M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 89, 92–193 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.011

M.A. Afifi, Corrosion behavior of zinc-graphite metal matrix composite in 1 M of HCl. ISRN Corros. 279856, 1–8 (2014). https://doi.org/10.1155/2014/279856

D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Comparison of the corrosion behavior of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution. J. Mag. Alloy 2(1), 36–49 (2014). https://doi.org/10.1016/j.jma.2014.01.004