Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress

Mingfang Qi1, Yufeng Liu1, Tianlai Li2
1Department of Horticulture, Shenyang Agricultural University, No.120, Dongling Road, Shenyang, Liaoning, China
2Key Laboratory of Protected Horticulture, Ministry of Education, No.120, Dongling Road, Shenyang, Liaoning, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Res 98(1–3):541–550

Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

Salvucci ME, Crafts–Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

Abdul-Baki AA (1991) Tolerance of tomato cultivars and selected germ plasm to heat stress. J Am Soc Hortic Sci 116(6):1113–1116

Jie Z, Tian-lai L, Jing X (2005) Effect of daytime sub-high temperature on photosynthesis and dry matter accumulation of tomato in greenhouse. Acta Horticult Sin 32(2):228–233

Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543

Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260. doi: 10.1385/BTER:104:3:249

Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279. doi: 10.1385/BTER:105:1-3:269

Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111(1–3):239–253. doi: 10.1385/BTER:111:1:239

Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. doi: 10.1007/s12011-007-8028-0

Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17. doi: 10.1016/j.plantsci.2012.07.005

Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1:21–24

Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals: Int J Role Metal Ions Biol Biochem Med 21(2):211–217. doi: 10.1007/s10534-007-9110-y

Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88. doi: 10.1007/s12011-007-0046-4

Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339–363

Crabtree RH (1998) A new type of hydrogen bond. Science 282(5396):2000–2001

Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908

Yang Y, Mao P, Wang Z-P, J-h Z (2012) Distribution of nanoparticle number concentrations at a nano-TiO2 plant. Aerosol Air Qual Res 12(5):934–940

Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi: 10.1016/j.scitotenv.2012.04.073

Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162. doi: 10.1016/j.ecoenv.2012.07.019

Wang S, Kurepa J, Smalle JA (2011) Ultra–small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

Parthasarathi T (2011) Phytotoxicity of nanoparticles in agricultural crops. In: Green Technology and Environmental Conservation (GTEC 2011), 2011 International Conference on, IEEE, pp 51–60

Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159(3):677–684. doi: 10.1016/j.envpol.2010.11.027

Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2):105–119