Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Res 98(1–3):541–550
Salvucci ME, Crafts–Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316
Abdul-Baki AA (1991) Tolerance of tomato cultivars and selected germ plasm to heat stress. J Am Soc Hortic Sci 116(6):1113–1116
Jie Z, Tian-lai L, Jing X (2005) Effect of daytime sub-high temperature on photosynthesis and dry matter accumulation of tomato in greenhouse. Acta Horticult Sin 32(2):228–233
Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543
Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260. doi: 10.1385/BTER:104:3:249
Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279. doi: 10.1385/BTER:105:1-3:269
Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111(1–3):239–253. doi: 10.1385/BTER:111:1:239
Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. doi: 10.1007/s12011-007-8028-0
Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70
Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17. doi: 10.1016/j.plantsci.2012.07.005
Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1:21–24
Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70
Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91
Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals: Int J Role Metal Ions Biol Biochem Med 21(2):211–217. doi: 10.1007/s10534-007-9110-y
Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88. doi: 10.1007/s12011-007-0046-4
Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339–363
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908
Yang Y, Mao P, Wang Z-P, J-h Z (2012) Distribution of nanoparticle number concentrations at a nano-TiO2 plant. Aerosol Air Qual Res 12(5):934–940
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi: 10.1016/j.scitotenv.2012.04.073
Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162. doi: 10.1016/j.ecoenv.2012.07.019
Wang S, Kurepa J, Smalle JA (2011) Ultra–small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498
Parthasarathi T (2011) Phytotoxicity of nanoparticles in agricultural crops. In: Green Technology and Environmental Conservation (GTEC 2011), 2011 International Conference on, IEEE, pp 51–60
Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159(3):677–684. doi: 10.1016/j.envpol.2010.11.027