Na+-coupled glycine transport in reticulocyte vesicles of distinct sidedness: Stoichiometry and symmetry

The Journal of Membrane Biology - Tập 86 - Trang 37-44 - 1985
Andrew M. Weigensberg1, Rhoda Blostein1
1Departments of Biochemistry and Medicine, McGill University, Montreal, Canada

Tóm tắt

Sodium-coupled glycine transport has been studied using membrane vesicles of distinct sidedness, either inside-out or right side-out, prepared from sheep reticulocytes. The activity is chloride dependent and characterized by high and low apparent affinities for glycine (K′ m ≅0.5mm and >10mm) for both types of vesicles as well as intact cells. Transport is symmetrical with respect to similar apparent affinity constants for glycine, for both the high- and low-affinity systems, and for sodium. Direct measurements of the sodium/glycine coupling indicate a ratio of 2∶1, consistent with kinetic data fitted to a Hill-type equation describing glycine flux as a function of sodium concentration.

Tài liệu tham khảo

Aronson, P.S. 1981. Identifying secondary active transport in epithelia.Am. J. Physiol. 240:FI-FII Benderoff, S., Johnstone, R.M., Blostein, R. 1978. Electrogenic sodium-dependent glycine transport in sheep reticulocytes.Can. J. Biochem. 56:545–551 Calquhoun, D. 1971. Lectures on Biostatistics. Clarendon, Oxford. Carruthers, A., Melchior, D.L. 1983. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.Biochim. Biophys. Acta 728:254–266 Christensen, H.N., Cespedes, C. de, Handlogten, M.E., Ronquist, G. 1973. Energization of amino acid transport, studied for the Ehrlich ascites tumour cells.Biochim. Biophys. Acta 300:487–522 Christensen, H.N., Handlogten, M.F. 1981. Role of system gly in glycine transport in monolayer cultures of liver cells.Biochem. Biophys. Res. Commun. 15:102–107 Crane, R.K. 1977. The gradient hypothesis and other models of carrier-mediated active transport.Rev. Physiol. Biochem. Pharmacol. 78:99–159 Curran, P.F., Hajjar, J.J., Glynn, I.M. 1970. The sodium-alanine interaction in rabbit iluem. Effect of alanine on sodium fluxes.J. Gen. Physiol. 55:297–308 Eavenson, E., Christensen, N. 1967. Transport systems for neutral amino acids in the pigeon erythrocyte.J. Biol. Chem. 242:5386–5396 Ellory, J.C., Jones, S.E.M., Young, J.D. 1981. Chloride-activated sodium-dependent glycine transport in human erythrocytes.J. Physiol. (London) 310:22P Glover, G.I., D'Ambrosio, S.M., Jensen, R.A. 1975. Versatile properties of a nonsaturable, homogeneous transport system inBacillus subtilis: Genetic, kinetic and affinity labeling studies.Proc. Natl. Acad. Sci. USA 72:814–818 Goldner, A.M., Schultz, S.G., Curran, P.F. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum.J. Gen. Physiol. 753:362–383 Hopfer, U., Groseclose, R. 1980. The mechanism of sodium-dependentd-glucose transport.J. Biol. Chem. 255:4453–4462 Imler, J.R., Vidaver, G.A. 1972. Anion effects on glycine entry into pigeon red blood cells.Biochim. Biophys. Acta 288:153–165 Jarvis, S.M., Hammel, J.R., Paterson, A.R.P., Clanachan, A.S. 1982. Species differences in nucleoside transport. A simple carrier with directional symmetry in fresh cells, but with directional asymmetry in cells from outdated blood.Biochem. J. 210:457–461 Johnstone, R.M. 1978. The basic asymmetry of Na+-dependent glycine transport in Ehrlich cells.Biochim. Biophys. Acta 512:199–213 Johnstone, R.M. 1979. Electrogenic amino acid transport.Can. J. Physiol. Pharmacol. 57:1–15 Kimmich, G.A. 1973. Coupling between Na+ and sugar transport in small intestine.Rev. Biomembr. 300:31–78 Kimmich, G.A. 1981. Gradient coupling in isolated intestinal cells.Fed. Proc. 40:2474–2479 Koser, B.H., Christensen, H.N. 1971. Effect of substrate structure on coupling ratio for Na+-dependent transport of amino acids.Biochim. Biophys. Acta 241:9–19 Lever, J.E. 1980. The use of membrane vesicles in transport studies.CRC Crit. Rev. Biochem. 7:187–246 Neal, J. 1972. Analysis of Michaelis kinetics for two independent, saturable membrane transport functions.J. Theor. Biol. 35:113–118 Okada, Y. 1979. Solute transport process in intestinal epithelial cells.Membr. Biochem. 2:339–365 Paterson, J.Y.F., Sepulveda, F.V., Smith, M.W. 1980. Stoichiometry versus coupling ratio in the cotransport of Na and different neutral amino acids.Biochim. Biophys. Acta 603:288–297 Schultz, S.G., Curran, P.F. 1980. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718 Steck, T.L. 1974. Preparation of impermeable inside-out and right side-out vesicles from erythrocyte membranes.Methods Membr. Res. 2:245–281 Steck, T.L., Weinstein, R.S., Strauss, J.H., Wallach, D.F.H. 1970. Inside-out red cell membrane vesicles: Preparation and purification.Science 169:255–257 Tosteson, D.C., Gunn, R.B., Wieth, J.O. 1972. Chloride and hydroxyl ion conductance of sheep red cell membrane.In: Erythrocytes, Thrombocytes and Leukocytes. E. Gerlach, K. Moser, E. Deutch and W. Wilmanns, editors. pp. 62–66. Georg Thieme, Stuttgart Turner, R.J., Moran A. 1982a. Stoichiometric studies of the renal outer cortical brush border membraned-glucose transporter.J. Membrane Biol. 67:73–80 Turner, R.J., Moran A. 1982b. Further studies of proximal tubular brush border membranesd-glucose transport heterogeneity.J. Membrane Biol. 70:37–45 Vidaver, G.A. 1964a. Transport of glycine by pigeon red cells.Biochemistry 3:662–667 Vidaver, G.A. 1964b. Glycine transport by hemolyzed and restored pigeon red cells.Biochemistry 3:795–799 Vidaver, G.A., Shepherd, S.L. 1968. Transport of glycien by hemolyzed and restored pigeon red blood cells.J. Biol. Chem. 243:6140–6150 Vidaver, G.A., Shepherd, S.L., Lagow, J.B., Wiechelman, K.J. 1976. Glycine transport by hemolyzed and restored pigeon red cells. Effects of a Donnan-induced potential on entry and exit.Biochim. Biophys. Acta 443:494–514 Weigensberg, A.M., Blostein, R. 1983. Energy depletion retards the loss of membrane transport during reticulocyte maturation.Proc. Natl. Acad. Sci. USA 80:4978–4982 Weigensberg, A.M., Johnstone, R.M., Blostein, R. 1982. Reversal of Na+-dependent glycine transport in sheep reticulocyte membrane vesicles.J. Bioenerg. Biomembr. 14:335–345 Wheeler, K.P., Inui, Y., Hollenberg, P.F., Eavenson, E., Christensen, H.N. 1965. Relation of amino acid transport to sodium-ion concentration.Biochim. Biophys. Acta 109:620–622 Winter, C.G., Christensen, H.N. 1965. Contrasts in neutral amino acid transport by rabbit erythrocytes and reticulocytes.J. Biochem. 210:3594–3600