Na+/K+-pump and neurotransmitter membrane receptors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI et al (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor co-localization in neostriatal neurons. Nat Neurosci 3:226–230. https://doi.org/10.1038/72929
Akkuratov EE, Lopacheva OM, Kruusmagi M, Lopachev AV, Shah ZA, Boldyrev AA, Liu L (2015) Functional interaction between Na/K-ATPase and NMDA receptor in cerebellar neurons. Mol Neurobiol 52:1726–1734. https://doi.org/10.1007/s12035-014-8975-3
Alvarez-Leefmans FJ, Gamino SM, Reuss L (1992) Cell volume changes upon sodium pump inhibition in Helix aspersa neurons. J Physiol 458:603–619
Arvanov VL (1990) Metabolic regulation of chemoreceptor properties of the membrane. In: Ayrapetyan SN, Arvanov VL, Arutchyan NI, Kalantaryan LB, Suleimanyan MA (eds) Metabolic regulation of membrane functions. Academy of Sciences of the Armenian SSR Publishing, Yerevan, pp 214–219
Arvanov VL, Ayrapetyan SN (1980) Effect of ouabain on cholinoreceptors of giant neurons of snails. Dokl Akad Nauk SSSR 251:222–226 (in Russian)
Arvanov V, Usherwood PN (1991) Effect of ouabain on volume and chemosensitivity of Xenopus oocytes injected with rat brain mRNA. Neurosci Lett 125:9–11
Arvanov VL, Ovakimyan KS, Stepanyan AS, Ayrapetyan SN (1992a) Ouabain blocks some rapid concentration-induced clamp acetylcholine responses on Helix neurons. Cell Mol Neurobiol 12:143–151
Arvanov VL, Stepanyan AS, Ayrapetyan SN (1992b) The effects of cAMP, Ca2+, and phorbol esters on ouabain-induced depression of acetylcholine responses in Helix neurons. Cell Mol Neurobiol 12:153–161
Ayrapetyan SN (1973) On the regulation of the mechanism of rhythmic activity of Helix neurons. In: Salanki J (ed) Neurobiology of invertebrates. Akademiai Kiado, Budapest, pp 81–92
Ayrapetyan SN (1990) New theory of metabolic regulation of membrane functional activity. In: Ayrapetyan SN, Arvanov VL, Arutchyan NI, Kalantaryan LB, Suleimanyan MA (eds) Metabolic regulation of membrane functions. Academy of Sciences of the Armenian SSR Publishing, Yerevan, pp 9–33
Ayrapetyan SN, Arvanov VL (1988) The metabolic regulation of membrane chemosensitivity. Sym Biol Hung 36:669–684
Ayrapetyan SN, Arvanov VL, Maginyan SB, Azatyan KV (1985) Further study of the correlation between Na-pump activity and membrane chemosensitivity. Cell Mol Neurobiol 5:231–243
Bagrov AY, Shapiro JI (2008) Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nat Clin Pract Nephrol 4:378–392. https://doi.org/10.1038/ncpneph0848
Bailey TW, Jin Y-H, Doyle MW, Smith SM, Andresen MC (2006) Vasopressin inhibits glutamate release via two distinct modes in the brainstem. J Neurosci 26:6131–6142. https://doi.org/10.1523/JNEUROSCI.5176-05.2006
Balduini W, Costa LG (1990) Characterization of ouabain-induced phosphoinositide hydrolysis in brain slices of the neonatal rat. Neurochem Res 15:1023–1029
Bartolami S, Gaboyard S, Quentin J, Travo C, Cavalier M, Barhanin J, Chabbert C (2011) Critical roles of transitional cells and Na/K-ATPase in the formation of vestinular endolymph. J Neurosci 31:16541–16549. https://doi.org/10.1523/JNEUROSCI.2430-11.2011
Bersier MG, Peña C, Rodriguez de Lores Arnaiz G (2008) The expression of NMDA receptor subunits in cerebral cortex and hippocampus is differentially increased by administration of endobain E, a Na+, K+-ATPase inhibitor. Neurochem Res 33:66–72. https://doi.org/10.1007/s.11064-007-9412-z
Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na+ + K+)-ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388
Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387
Blaustein MP (2018) The pump, the exchanger, and the holy spirit: origins and 40 years evolution of ideas about the ouabain-Na+ pump endocrine system. Am J Physiol Cell Physiol 314:C3–C26. https://doi.org/10.1152/ajpcell.00196.2017
Boldyrev AA (1993) Functional activity of Na+, K+-pump in normal and pathological tissues. Mol Chem Neuropath 19:83–93
Boldyrev A, Bulygina E, Gerassimova O, Lyapina L, Schoner W (2004) Functional relationship between Na/K-ATPase and NMDA-receptors in rat cerebellum granule cells. Biochemistry (Mosc) 69:429–434
Cain CC, Sipe DM, Murphy RF (1989) Regulation of endocytic pH by the Na+, K+-ATPase in living cells. Proc Natl Acad Sci 86:544–548. https://doi.org/10.1074/pnas.86.2.544
Calvino MA, Pena C, Rodriguez de Lores Arnaiz G (2002) Metabotropic glutamate receptor involvement in phosphoinositide hydrolysis stimulation by an endogenous Na+, K+-ATPase inhibitor and ouabain in neonatal rat brain. Brain Res Dev Brain Res 138:167–175
Canfield VA, Xu KY, D’Aquila T, Shyjan AW, Levenson R (1992) Molecular cloning and characterization of Na+, K+-ATPase from Hydra vulgaris: implications for enzyme evolution and ouabain sensitivity. New Biol 4:339–348
Catarsi S, Brunelli M (1991) Serotonin depresses the after-hyperpolarization through the inhibition of the Na+/K+-ATPase in the sensory neurons of the leech. J Exp Biol 155:261–273
Catarsi S, Scuri R, Brunell M (1993) Cyclic AMP mediates inhibition of the Na+/K+-ATPase by serotonin in tactile sensory neurons of the leech. J Physiol (Lond) 462:229–242
Caulfield MP, Birdsall NJM (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290
Chemeris NK, Kazachenko VN, Kislov AN, Kurchikov AA (1982) Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurons. J Physiol (Engl) 323:1–19
Chiang JTA, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behavior and neuronal function in free-living soil nematodes. J Exp Biol 209:1859–1873
Christoffersen GRJ (1972) Steady-state contribution of the Na, K-pump to the membrane potential in identified neurons of a terrestrial snail, Helix pomatia. Acta Physiol Scand 86:498–514
Clarke RJ, Rasmussen CM, Apell H-J (2013) Quantitative calculation of the role of Na(+), K(+)-ATPase in thermogenesis. Biochim Biophys Acta 1827:1205–1212. https://doi.org/10.1016/j.bbabio.2013.06.010
Condrescu M, Gardner JP, Chernaya G, Aceto JF, Kroupis C, Reeves JP (1995) ATP-dependent regulation of sodium-calcium exchange in Chinese hamster ovary cells transfected with the bovine cardiac sodium-calcium exchanger. J Biol Chem 270:9137–9146
Damulewicz M, Rosato E, Pyza E (2013) Circadian regulation of the Na+/K+-ATPase alpha subunit in the visual system is mediated by the pacemaker and by retinal photoreceptors in Drosophila melanogaster. PLoS ONE 8(9):e73690. https://doi.org/10.1371/journal.pone.0073690
Daut J (1987) The living cell as an energy-transducing machine. A minimal model of myocardial metabolism. Biochem Biophys Acta-Rev Bioenerg 895:41–62
Davis MW, Somerville D, Lee RYN, Lockery S, Avery L, Fambrough DM (1995) Mutations in the Caenorhabditis elegans Na, K-ATPase α-subunit gene, eat-6, disrupt excitable cell function. J Neurosci 15:8408–8418
Deitmer JW, Eckert R, Schlue WR (1987) Changes in the intracellular free calcium concentration of Aplysia and leech neurones measured with calcium-sensitive microelectrodes. Canad J Physiol Pharmacol 65:934–939
Dierkes PW, Wusten HJ, Klees G, Muller A, Hochstrat P (2006) Ionic mechanism of ouabain-induced swelling of leech Retzius neurons. Pflugers Arch – Eur J Physiol 452:25–35. https://doi.org/10.1007/s00424-005-0009-6
DiPolo R, Beaug L (1986) In squid axons reverse Na/K exchange requires internal Ca and/or ATP. Biochim Biophys Acta 854:298–306
Doi M, Iwasaki K (2008) Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner. Mol Cell Neurosci 38:548-558. https://doi.org/10.1016/j.mcn.2008.05.003
Dorner R, Zens M, Schlue W-R (1994) Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity on leech glial and nerve cells. Brain Res 665:47–53. https://doi.org/10.1016/0006-8993(94)91150-9
Fuchs R, Schmid S, Mellman I (1989) A possible role for Na+, K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci 86:539–543. https://doi.org/10.1073/pnas.86.2.539
Fujino S, Fujino M (1982) Ouabain potentiation and Ca release from sarcoplasmic reticulum in cardiac and skeletal muscle cells. Can J Physiol Pharm 60:542–555
Gardoni F, Mauceri D, Malinverno M, Polli F, Costa C, Tozzi A, Siliquini S, Picconi B, Cattabeni F, Calabresi P, Di Luca M (2009) Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression. J Neurosci 29:669–677. https://doi.org/10.1523/JNEUROSCI.3921-08.2009
Gorska-Andrzejak J, Salvaterra P, Meinertzhagen I, Krzeptowski W, Gorlich A et al (2009) Cyclic expression of Na+/K+-ATPase in the visual system of Drosophila melanogaster. J Insect Physiol 55:459–468. https://doi.org/10.1016/j.insphys.2009.02.003
Goto A, Yamada K, Yagi N, Yoshioka M, Sugimoto T (1992) Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol Rev 44:377–399
Grigorian KP, Azatyan KV, Kazaryan SH, Ayrapetyan SN (2001) Ouabain-sensitive and insensitive acetylcholine receptors on the membrane of the same neuron of Helix pomatia. Comp Biochem Physiol C: Toxicol Pharmacol 128:511–520
Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW et al (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88:6259–6263. https://doi.org/10.1073/pnas.88.14.6259
Hawkins EG, Martin I, Kondo LM, Judy ME, Brings VE et al (2015) A novel cholinergic action of alcohol and the development of tolerance to that effect in Caenorhabditis elegans. Genetics 199:135–149. https://doi.org/10.1534/genetics.114.171884/-/DC1
Hazelwood LA, Free RB, Cabrera DM, Skinbjerg M, Sibley DR (2008) Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+, K+ -ATPase. https://doi.org/10.1074/jbc.M805520200
Hazelwood LA, Free RB, Sibley (2010) Dopamine receptor-interacting proteins. In: Neve KA (ed) The dopamine receptors, 2nd edn. Humana Press, New York. https://doi.org/10.1007/978-1-60327-333-6_9
Hernández RJ (1982) A serotonin agonist-antagonist reversible effect on Na+-K+-ATPase activity in the developing rat brain. Dev Neurosci 5:326–331
Hibino H, Nin F, Tsuzuki C, Kurachi Y (2010) How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch 459:521–533
Hilgenberg LGW, Su H, Gu H, O’Dowd DK, Smith MA (2006) α3Na+/K+-ATPase is a neuronal receptor for Agrin. Cell 125:359–369. https://doi.org/10.1016/j.cell.2006.01.052
Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR et al (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203
Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248
Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22:496–508. https://doi.org/10.1016/jconb.2012.01.007
Jaiswal MK, Dvela M, Lichtstein D, Mallick BN (2010) Endogenous ouabain-like compounds in locus coeruleus modulate rapid eye movement sleep in rat. J Sleep Res 19:183–191. https://doi.org/10.1111/j.1365-2869.2009.00781.x
Jansen JK, Nicholls JG (1973) Conductance changes, an electrogenic pump and the hyperpolarization of leech neurons following impulses. J Physiol 229:635–655. https://doi.org/10.1113/jphysiol.1973.sp010158
Kabbani N, Levenson R (2007) A proteomic approach to receptor signaling: molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 complex. Eur J Pharmacol 572:83–93. https://doi.org/10.1016/j.ejphar.2007.06.059
Karpova LV, Bulygina ER, Boldyrev AA (2010a) Different neuronal Na(+)/K(+)-ATPase isoforms are involved in diverse signaling pathways. Cell Biochem Funct 28:135–141. https://doi.org/10.1002/cbf.1632
Karpova LV, Akkuratov EE, Brodskaia OM, Boldyrev AA (2010b) The Na+ pump and intracellular signaling mechanisms. Biofizika 55(6):1022–1029 (in Russian)
Kehoe JS, Ascher P (1970) Re-evaluation of the synaptic activation of an electrogenic sodium pump. Nature 225:820–823
Kim D, Urban J, Boyle DL, Park Y (2016) Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci Rep 6:21047. https://doi.org/10.1038/srep21047
Kononenko NI (1976) Electrogenic sodium pump in nerve cells. Molecular biology. Issue 13. Biological membranes. Naukova Dumka Publishing, Kiev, pp 3–15
Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F (2006) On the functional interaction between nicotinic acetylcholine receptor and Na+/K+-ATPase. Pflugers Arch 452:756–765
Kueh D, Barnett WH, Cymbalyak RL, Calabrese RL (2016) Na+/K+-pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches. eLIFE 5:e19322. https://doi.org/10.75554/eLife.19322.001
Lambert JDC, Kerkut GA, Walker RJ (1974) The electrogenic sodium pump and membrane potential of identified neurons in Helix aspersa. Comp Biochem Physiol 47A:897–916
Lang F, Vallon V, Knipper M, Wangemann P (2007) Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 293:C1187–C1208
Li Z, Langhans SA (2015) Transcriptional regulators of Na, K-ATPase subunits. Front Cell Dev Biol 3:66. https://doi.org/10.3389/fcell.2015.00066
Lopez Ordieres MG, Rodriguez de Lores Arnaiz G (2000) Neurotensin inhibits neuronal Na+/K+-ATPase activity through high affinity peptide receptor. Peptides 21:571–576
Lopez Ordieres MG, Gironacci M, Rodriguez de Lores Arnaiz G, Pena C (1998) Effect of angiotensin-(1-7) on ATPase in several tissues. Reg Pept 77:135–139
Low C-M, Wee KS-L (2010) New insights into the Not-So-new NR3 subunit of N-methyl-D-aspartate receptor: localization, structure and function. Mol Pharmacol 78:1–11. https://doi.org/10.1124/mol.110.064006
Luan Z, Redding K, Li H-S (2014) Loss of Na+/K+-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration. Exp Neurol 261:791–801. https://doi.org/10.1016/j.expneurol.2014.08.025
Lukas RJ, Changeux J-P, Le Novere N, Albuquerque EX, Balfour DJK et al (1999) International union of pharmacology XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401
Man HY (2012) The sodium pump: novel functions in the brain. Biochem Anal Biochem 1:5.1000e116. https://doi.org/10.4172/2161-1009.1000e116
Mark RJ, Hensley K, Butterfield DA, Mattson MP (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15:6239–6249
Meyer-Lehnert H, Backer A, Kramer HJ (2000) Inhibitors of Na-K-ATPase in human urine: effects of ouabain-like factors and of vanadium-diascorbate on calcium mobilization in rat vascular smooth muscle cells—comparison with the effects of ouabain, angiotensin II, and arginine-vasopressin. Am J Hypertens 13:364–369
Micci MA, Christensen BN (1998) Na+/Ca2+ exchange in catfish retina horizontal cells: regulation of intracellular Ca2+ store function. Am J Physiol 274:1625–1633
Mosharova IV (2001) Types of glutamate receptors and their role in the implementation of synaptic transmission. Neurochemistry 1:3–18
Okamura H, Yasuhara JC, Fambrough DM, Takeyasu K (2002) Evolution of the P-type ATPase subunit families with special reference to the Na, K-ATPase and H, K-ATPase subgroup. J Membr Biol 191:13–24
Olsen RW (2018) GABAA receptor: positive and negative allosteric modulators. Neuropharm 136(Pt A):10–22. https://doi.org/10.1016/j.neuropharm.2018.0.036
Pereyra-Alfonso S, del Valle AM, Vazquez C, Pena C, Rodriguez de Lores Arnaiz G (2008) Neurotensin and Na pump inhibition. Neurochem Res 33:2206–2213. https://doi.org/10.1007/S11064-008-9672-2
Petrushanko IY, Mitkevich VA, Anashkina AA, Adzhubei A, Burnysheva KM, Lakunina VA, Kamanina YV, Dergousova EA, Lopina OD, Ogunshola OO, Bogdanova AY, Makarov AA (2016) Direct interaction of beta-amyloid with Na, K-ATPase as a putative regulator of the enzyme function. Sci Rep 6:27738. https://doi.org/10.1038/srep27738
Pin J-P, Duvoison R (1995) Review: neurotransmitter receptors I. The metabotropic glutamate receptors—structure and functions. Neuropharmacology 34:1–26
Pivovarov AS, Boguslavskii DV (2001) The Na, K pump regulates decreases in the cholinosensitivity of neurons in the common snail to a cellular analog of habituation: the role of cellular calcium. Neurosci Behav Physiol 31:539–546
Pivovarov AS, Walker RJ (1996) Direct and modulatory effects of FMRFamide, SKPYMRFamide and acetyl-SKPYMRFamide on LPa2, LPa3, and RPa3 identified neurons of Helix lucorum. Regul Pept 67:169–178
Pivovarov AS, Foreman RC, Walker RJ (2007) Involvement of Na, K-pump in SEPYLRFamide-mediated reduction of cholinosensitivity in Helix neurons. Regul Pept 138:103–112. https://doi.org/10.1016/j.regpep.2006.08.009
Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, Potter BV, Terrar DA (1999) An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J Biol Chem 274:17820–17827
Rand JB, Duerr JS, Frisby DL (2000) Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414–2422
Reines A, Pena C, de Lores R, Amaiz G (2001) [3H]dizocilpine binding to N-methyl-D-aspartate (NMDA) receptor is modulated by an endogenous Na+, K+-ATPase inhibitor: comparison with ouabain. Neurochem Int 39:301–310
Reines A, Zarate S, Pena C, Rodriguez de Lores Arnaiz G (2004) The effect of endogenous modulator endobain E on NMDA receptor is interfered by Zn++ but is independent of modulation by spermidine. Neurochem Res 29:819–825
Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797
Robbins TW, Murphy ER (2006) Behavioural pharmacology: 40 + years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 27(3):141–148. https://doi.org/10.1016/j.tips.2006.01.009
Rodriguez de Lores Arnaiz G, Reines A, Herbin T, Pena C (1997) Kinetics of Na+, K+-ATPase inhibition by brain endobains. Ann NY Acad Sci 834:642–645
Rodriguez de Lores Arnaiz G, Reines AG, Herbin T, Pena C (1998) Na+, K+-ATPase interaction with a brain endogenous inhibitor (endobain E). Neurochem Int 33:425–433
Rodriguez de Lores Arnaiz G, Schneider P, Pena C (1999) Brain soluble fractions which modulate Na+, K+-ATPase activity likewise modify muscarinic receptor. Neurochem Res 24:1417–1422
Roy M, Sivan-Loukianova E, Eberl DF (2013) Cell-type-specific roles of Na+/K+-ATPase subunits in Drosophila auditory mechanosensation. Proc Natl Acad Sci 110:181–186
Saez AG, Lozano E, Zaldivar-Riveron A (2009) Evolutionary history of Na, K-ATPases and their osmoregulatory role. Genetica 136:479–490. https://doi.org/10.1007/s10709-009-9356-0
Saghian AA, Ayrapetyan SN, Carpenter DO (1996) Low concentrations of ouabain stimulate Na+/Ca2+ exchange in neurons. Cell Mol Neurobiol 16:489–498
Schlue WR (1991) Effects of ouabain on intracellular ion activities of sensory neurons of the leech central nervous system. J Neurophysiol 65:736–746
Schoner W (2000) Ouabain, a new steroid hormone of adrenal gland and hypothalamus. Exp Clin Endocrinol Diabetes 108:449–454. https://doi.org/10.1055/s-2000-8140
Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem/FEBSJ 269:2440–2448. https://doi.org/10.1046/j.1432-1033.2002.02911.x
Schubiger M, Feng Y, Fambrough DM, Palka J (1994) A mutation of the Drosophila sodium pump α subunit gene results in bang-sensitive paralysis. Neuron 12:373–381
Scuri R, Mozzachiodi R, Brunelli M (2002) Activity-dependent increase of the AHP amplitude of T sensory neurons of the leech. J Neurophysiol 88:2490–2500. https://doi.org/10.1152/jn.01027.2001
Scuri R, Lombardo P, Cataldo E, Ristori C, Brunelli M (2007) Inhibition of Na+/K+-ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. Eur J Neurosci 25:159–167. https://doi.org/10.1111/j.1460-9568.2006.05257.x
Skou JC (1957) The influence of some cations on an adenosine triphosphatase from crab peripheral nerves. Biochim Biophys Acta 23:394–401
Skou JC (1989) The identification of the sodium-pump as the membrane bound Na+/K+-ATPase: a commentary by. Biochim Biophys Acta 1000:435–438
Stelmashook EV, Weih M, Zorov D, Victorov I, Dirnagl U, Isaev N (1999) Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Lett 456(1):41–44
Suleimanyan MA (1990) Autoregulation of electrogenic transport Na+ through the membrane. In: Ayrapetyan SN, Arvanov VL, Arutchyan NI, Kalantaryan LB, Suleimanyan MA (eds) Metabolic regulation of membrane functions. Academy of Sciences of the Armenian SSR Publishing, Yerevan, pp 99–110
Suleimanyan MA, Sagiian AA, Ayrapetian SN (1984) Relation between sodium pump activity and the osmotic pressure of the medium. Biofizika 29:822–826 (in Russian)
Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems. Neuron 76:82–97
Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol-Cell Physiol 279:C541–C566
Thomas RC (1972a) Intracellular sodium activity and the sodium pump in snail neurones. J Physiol 220:55–71
Thomas RC (1982) Electrophysiology of the sodium pump in a snail neuron. Curr Topics Membr Trans 16:3–16
Tian J, Cai T, Yuan Z, Wang H, Liu L et al (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326. https://doi.org/10.1091/mbc.e05-08-0735
Tobin AE, Calabrese RL (2005) Myomodulin increases Ih and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950. https://doi.org/10.1152/jn.00340.2005
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. https://doi.org/10.1124/pr.109.002451
Troppmann B, Balfranz S, Krach C, Baumann A, Blenau W (2014) Characterization of an invertebrate-type dopamine receptor of the american cockraoch, Periplaneta Americana. Int J Mol Sci 15:629–653. https://doi.org/10.3390/ijms.15010629
Trussell LO, Raman IM, Zhang S (1994) AMPA receptors and rapid synaptic transmission. Semin Neurosci 6:71–79. https://doi.org/10.1006/smns.1994.1010
Van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115. https://doi.org/10.1016/j.neuron.2012.09.014
Walker RJ, Brooks HL, Holden-Dye L (1996) Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113:S3–S33. https://doi.org/10.1017/S0031182000077878
Wang Y-C, Huang R-C (2006) Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109–118. https://doi.org/10.1152/jn.01369.2005
Wang F, Smith NA, Xu Q, Fujita T, Baba A et al (2012) Astrocytes modulate neural network activity by Ca2+ dependent uptake of extracellular K+. Sci Signal 5(218):ra26. https://doi.org/10.1126/scisignal.2002334
Wu Z-Q, Chen J, Chi Z-Q, Liu J-G (2007) Involvement of dopamine system in regulation of Na+, K+-ATPase activity by morphine. Mol Pharmacol 71:519–530. https://doi.org/10.1024/mol.106.029561
Zhang D, Hou Q, Wang M, Lin A, Jarzylo L et al (2009) Na, K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J Neurosci 29:4498–4511. https://doi.org/10.1523/JNEUROSCI.6094-08.2009
Zhang L, Guo F, Su S, Guo H, Xiong C, Yin J, Li W, Wang Y (2012a) Na(+)/K(+)-ATPase inhibition upregulates NMDA-evoked currents in rat hippocampal CA1 pyramidal neurons. Fundam Clin Pharmacol 26:503–512. https://doi.org/10.1111/j.1472-8206.2011.00947.x