Hành vi nhiệt đàn hồi của tấm rỗng hình sin chức năng mỏng (TFGS) dựa trên NURBS trên nền móng Winkler biến đổi

Anand Prakash1, Pawan Kumar1, V. H. Saran1, S. P. Harsha1
1Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India

Tóm tắt

Trong nghiên cứu hiện tại, phân tích tĩnh và rung động của tấm rỗng chức năng hình sin mỏng với độ chính xác cao đã được thực hiện dựa trên phân tích hình học NURBS. Sự biến đổi của các thuộc tính vật liệu nhiệt cơ của tấm này sử dụng quy luật lũy thừa đã được điều chỉnh và quy luật hình sin. Để xây dựng mô hình toán học cho tấm, các trường dịch chuyển dựa trên lý thuyết Kirchhoff–Love với nguyên lý công việc ảo và tính liên tục cao cấp của các hàm cơ sở NURBS trong phân tích hình học đã được áp dụng. Nghiên cứu hội tụ và đánh giá đã được thực hiện để xác minh tính hiệu quả và độ chính xác của phương pháp hiện tại. Tác động của chỉ số rỗng, chỉ số gradient vật liệu, điều kiện biên, tải nhiệt và hình dạng đối với biến dạng, tần số rung động và điều tra chi tiết về hình dáng chế độ. Từ phân tích, đã nhận thấy rằng tần số chuẩn hóa giảm và biến dạng trung tâm chuẩn hóa tăng khi chỉ số gradient của vật liệu tăng lên. Những phát hiện từ phân tích này có thể được sử dụng cho các thành phần có độ dày rất nhỏ, chẳng hạn như tấm và cánh quạt tuabin, bình chứa lò phản ứng hạt nhân, và nhiều thành phần máy móc khác được làm từ vật liệu chức năng rỗng.

Từ khóa

#phân tích hình học NURBS #tấm rỗng #vật liệu chức năng #lý thuyết Kirchhoff–Love #ứng suất #độ rung.

Tài liệu tham khảo

Akavci, S.S., Tanrikulu, A.H.: Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories. Compos. B Eng. 83, 203–215 (2015) Attia, A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R.: Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories. Steel Compos. Struct. 18(1), 187–212 (2015) Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225(3), 526–536 (2011) Barron, R.F., Barron, B.R.: Design for Thermal Stresses. Wiley, New York (2011) Bedroud, M., Nazemnezhad, R., Hosseini-Hashemi, S.: Axisymmetric/asymmetric buckling of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Meccanica 50(7), 1791–1806 (2015) Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R.: On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos. Struct. 18(4), 1063–1081 (2015) Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Chowdary, S., Kumar Gara, D.: State of the art in functionally graded materials. Compos. Struct. 262, 113596 (2021) Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009) Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006) Enab, T.A.: Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Eng. J. 5(3), 839–850 (2014) Harsha, A., Kumar, P.: Thermoelectric elastic analysis of bi-directional three-layer functionally graded porous piezoelectric (FGPP) plate resting on elastic foundation. Forces Mech. 8, 100112 (2022) Hosseini-Hashemi, S., Bedroud, M., Nazemnezhad, R.: An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013) Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R.: A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53(1), 11–22 (2011) Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H., Omidi, M.: Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 34(5), 1276–1291 (2010) Huang, X.L., Shen, H.S.: Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int. J. Solids Struct. 41(9–10), 2403–2427 (2004) Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005) Kumar, P., Harsha, S.P.: Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 235(4), 813–827 (2021a) Kumar, P., Harsha, S.P.: Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Compos. Struct. 267, 113901 (2021b) Kumar, P., Harsha, S.P.: Vibration response analysis of PZT-4/PZT-5H based functionally graded tapered plate subjected to electro-mechanical loading. Mech. Res. Commun. 116, 103765 (2021c) Kumar, P., Harsha, A.: Vibration response analysis of the bi-directional porous functionally graded piezoelectric (BD-FGP) plate. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2099418 Kumar, P., Harsha, S.P.: Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric effect. Mater. Today Commun. (2022a). https://doi.org/10.1016/j.mtcomm.2022.103929 Kumar, P., Harsha, S.P.: Response analysis of functionally graded piezoelectric plate resting on elastic foundation under thermo-electro environment. J. Compos. Mater. 56(24), 3749–3767 (2022b) Kumar, P., Harsha, S.P.: Electroelastic static and vibration response analysis of sigmoid PZT-5A/Pt based smart functionally graded (SFG) plate. Int. J. Struct. Stab. Dyn. (2022c). https://doi.org/10.1142/S0219455422501553 Kumar, P., Harsha, S.P.: Static, buckling and vibration response analysis of three-layered functionally graded piezoelectric plate under thermo-electric mechanical environment. J. Vib. Eng. Technol. (2022d). https://doi.org/10.1007/s42417-022-00467-2 Kumar, P., Harsha, S.P.: Dynamic analysis of porosity dependent functionally graded sigmoid piezoelectric (FGSP) plate. Structures 46, 564 (2022e) Kumar, V., Singh, S.J., Saran, V.H., Harsha, S.P.: Vibration response analysis of tapered porous FGM plate resting on elastic foundation. Int. J. Struct. Stab. Dyn. (2022). https://doi.org/10.1142/S0219455423500244 Lall, P., Harsha, M., Goebel, K.: Method for Determination of Accrued Damage and Remaining Life During Field-Usage in Lead-Free Electronics, SMTAI (2012a) Lall, P., Harsha, M., Goebel, K., Suhling, J.: Sustained damage and remaining useful life assessment in leadfree electronics subjected to sequential multiple thermal environments. ECTC (2012b) Li, X., Zhang, J., Zheng, Y.: NURBS-based isogeometric analysis of beams and plates using high order shear deformation theory. Math. Probl. Eng. (2013) Minh, P.P., Duc, N.D.: The effect of cracks and thermal environment on free vibration of FGM plates. Thin-Walled Struct. 159, 107291 (2021) Nami, M.R., Janghorban, M.: Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant. Compos. Struct. 111, 349–353 (2014) Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S., Rabczuk, T.: Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput. Mater. Sci. 65, 74–80 (2012) Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Kulasegaram, S., Bordas, S.P.A.: Isogeometric analysis of functionally graded plates using a refined plate theory. Compos. B Eng. 64, 222–234 (2014) Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Nguyen-Thoi, T.: Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-Walled Struct. 54, 1–18 (2012) Pigel, L., Tiller, W.: The NURBS book (1997) Pradhan, K.K., Chakraverty, S.: Free vibration of functionally graded thin elliptic plates with various edge supports. Struct. Eng. Mech. Int. J. 53(2), 337–354 (2015) Prakash, A., Kumar, S.R., Verma, R.: Vibration analysis of functionally graded materials for cylinder liner used in agricultural engine part. Open Agric. 4(1), 258–266 (2019) Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006) Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 21(6), 593–626 (1998) Singh, S.J., Harsha, S.P.: Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation. Int. J. Mech. Mater. Des. 16(4), 707–731 (2020) Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015) Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H.: Isogeometric analysis of functionally graded plates using higher-order shear deformation theory. Compos. B Eng. 51, 368–383 (2013) Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013) Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 30(4), 517–524 (2011) Woodward, B., Kashtalyan, M.: Performance of functionally graded plates under localised transverse loading. Compos. Struct. 94(7), 2254–2262 (2012) Xiao, H.T., Yue, Z.Q.: Stresses and displacements in functionally graded materials of semi-infinite extent induced by rectangular loadings. Materials 5(2), 210–226 (2012) Yin, S., Hale, J.S., Yu, T., Bui, T.Q., Bordas, S.P.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014) Yin, S., Yu, T., Liu, P.: Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface. Adv. Mech. Eng. 5, 634584 (2013) Zare, M., Nazemnezhad, R., Hosseini-Hashemi, S.: Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method. Meccanica 50(9), 2391–2408 (2015) Zhang, L.W., Cui, W.C., Liew, K.M.: Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int. J. Mech. Sci. 103, 9–21 (2015b) Zhang, B., He, Y., Liu, D., Shen, L., Lei, J.: An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation. Appl. Math. Model. 39(13), 3814–3845 (2015a)